Search Results for: IT-27

Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation.

Li Z, Czechowicz A, Scheck A, Rossi DJ, Murphy PM (2019) Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. Nat Commun 10:616. doi: 10.1038/s41467-018-08202-w Objective: To develop a conditioning protocol for fully MHC-mismatched bone marrow allotransplantation in mice involving transient immunosuppression and selective depletion of recipient hematopoietic stem […]

Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. Read More »

Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes D, Tate T, Czechowicz A, Kfoury Y, Ruchika F, Rossi D, Verdine G, Mansour M, Scadden D (2016) Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 34:738-745. doi: 10.1038/nbt.3584 Summary: To demonstrate correction of a clinically relevant disease, we employed

Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Read More »

Cover Article: Targeted depletion of hematopoietic stem cells promises safer transplantation

By Rahul Palchaudhuri, Ph.D., Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA Hematopoietic stem cell transplantation (HSCT) has been clinically used for 58 years and offers life-saving therapies for a variety of malignant and non-malignant blood disorders. Currently 50,000 transplants are performed globally per year with 90% of these for the

Cover Article: Targeted depletion of hematopoietic stem cells promises safer transplantation Read More »

Chemical strategies for antigen-selective targeting of autoreactive B Cells. Chapter 2: Sequential prodrug strategy to target and eliminate ACPA-selective autoreactive B cells.

Lelieveldt L (2019) Chemical strategies for antigen-selective targeting of autoreactive B Cells. Chapter 2: Sequential prodrug strategy to target and eliminate ACPA-selective autoreactive B cells. Radboud Universiteit Nijmegen Nijmegen, Netherlands 45-64. Thesis. Objective: To develop a method to target and selectively eliminate autoreactive B cells that produce anti-citrullinated proteins antibodies (ACPA) using a sequential antigen

Chemical strategies for antigen-selective targeting of autoreactive B Cells. Chapter 2: Sequential prodrug strategy to target and eliminate ACPA-selective autoreactive B cells. Read More »

Identification of lineage-specific markers for therapeutic targeting of mast cells.

Plum T (2019) Identification of lineage-specific markers for therapeutic targeting of mast cells. Ruperto-Carola University of Heidelberg, Germany Thesis. doi: 10.11588/heidok.00023555 Usage: Mice were injected i.v. with either 100 µg of 1:1 molar mixture of biotinylated CD63 antibody and Streptavidin-ZAP (60 µg mAb + 40 µg SAP) or with 40 µg SAP alone. All injections

Identification of lineage-specific markers for therapeutic targeting of mast cells. Read More »

Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer

Su Y, Liu Y, Behrens CR, Bidlingmaier S, Lee NK, Aggarwal R, Sherbenou DW, Burlingame AL, Hann BC, Simko JP, Premasekharan G, Paris PL, Shuman MA, Seo Y, Small EJ, Liu B (2018) Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight 3(17):e121497. doi: 10.1172/jci.insight.121497 PMID: 30185663 Objective: To investigate the suitability of

Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer Read More »

Shopping Cart
Scroll to Top