sfn2001

62 entries

Immunolesioning of identified motoneuron pools following intramuscular injection of the immunotoxin, 192-IgG-saporin, in neonatal rats.

Peterson WE, Jordan LM, Brownstone RM (2001) Immunolesioning of identified motoneuron pools following intramuscular injection of the immunotoxin, 192-IgG-saporin, in neonatal rats. Neuroscience 2001 Abstracts 626.14. Society for Neuroscience, San Diego, CA.

Summary: Studies have shown that the immunotoxin, 192-IgG-Saporin, can selectively lesion p75-positive cholinergic neurons of the basal forebrain in adult rats. Here we demonstrate the novel use of 192-IgG-Saporin to induce MN loss following intramuscular (I.M.) injection in neonatal rats. Two days following I.M. injection of 192-IgG-Cy3, neonatal rats (but not adult rats or neonatal mice) had Cy3-labeled MNs. This suggests that the 192-IgG antibody and its conjugates can be internalised by receptor-mediated endocytosis and retrogradely transported to spinal motor neurons. To induce MN loss, the left hind limb musculature of anaesthetised Sprague-Dawley rats were exposed, and several muscles injected with 0.5μg of 192-IgG-Saporin (Chemicon). Right hind-limb muscles were injected with DiI. Animals were sacrificed 25 days later. Ten μm coronal sections were obtained using a cryostat and Nissl stained. The neonatal rats showed signs of a locomotor deficit 2.5 weeks post injection with 192-IgG-Saporin, which increased slightly in severity over the next week and a half. Nissl stained coronal sections of the lumbar region showed an obvious MN deficit on the 192-IgG-Saporin treated side compared to control side. The injected muscles were also severely atrophic, a not unexpected finding given that they too express p75 receptors. We conclude that 192-IgG-Saporin can be used to lesion MN pools when IM injected in neonatal rats. This model may prove useful for testing cell replacement therapies for the treatment of MN diseases like amyotrophic lateral sclerosis (ALS).

Related Products: 192-IgG Mouse Monoclonal, Cy3-labeled (Cat. #AB-N43FL3)

Sound sequence discrimination requires cholinergic inputs and suppression of M-currents in the rat auditory cortex.

Kudoh M, Seki K, Watanabe S, Shibuki K (2001) Sound sequence discrimination requires cholinergic inputs and suppression of M-currents in the rat auditory cortex. Neuroscience 2001 Abstracts 621.2. Society for Neuroscience, San Diego, CA.

Summary: Synaptic potentiation after sequential heterosynaptic stimulation is dependent on the stimulus sequence in the auditory cortex. Atropine or antagonists of M1 receptors block this sequence dependence. However, it is rescued by linopirdine, an inhibitor of M-currents, even in the presence of atropine. In the present study, we investigated the role of cholinergic inputs and the resulting suppression of M-currents in sound sequence discrimination. Rats were trained to discriminate sequence of two sounds. Licking a spout during sound presentation of a particular sequence was rewarded with water. The sounds of the rewarded or unrewarded sequence were randomly presented in a trial, which was repeated every one minute for 12 hours in 4 days. The percentage of the trials with a licking response to sounds was calculated separately for the rewarded and unrewarded sequence. Test performance, estimated from the difference, was significantly increased in the 4 days. Atropine (10 mg/Kg, i.p.) suppressed the increase of test performance. A cholinergic immunotoxin, 192IgG-saporin, was injected into the auditory cortex (62-400 ng/1µl) 1 week before the test. Sound sequence discrimination, but not discrimination between the two sounds, was significantly suppressed in these rats. Linopirdine (5 mg/Kg, i.p.) rescued the test performance of sound sequence discrimination in the rats injected with 192IgG-saporin. These results suggest that sound sequence discrimination requires cholinergic inputs and the resulting suppression of M-currents in the auditory cortex.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Destruction by SP-SAP of rat retrotrapezoid nucleus (RTN) neurons expressing the neurokinin 1 receptor (NK1R) decreases breathing at rest and in response to hypercapnia.

Nattie EE, Li A (2001) Destruction by SP-SAP of rat retrotrapezoid nucleus (RTN) neurons expressing the neurokinin 1 receptor (NK1R) decreases breathing at rest and in response to hypercapnia. Neuroscience 2001 Abstracts 573.1. Society for Neuroscience, San Diego, CA.

Summary: Neurons in the RTN are hypothesized to provide both a tonic excitation for breathing and one location for central chemoreception (see Nattie, E., Prog. Neurobiol.1999). Lesions in anesthetized animals support the former while both lesions and focal acidification in unanesthetized animals support the latter. Application of substance P (SP) in the RTN increases respiratory output and immunohistochemistry for the SP (NK1) receptor shows extensive staining in the RTN. To destroy specifically these RTN neurons with NK1Rs we injected unilaterally in the RTN of the rat SP conjugated to the ribosomal toxin, saporin (SP-SAP; 100 nl; 1 uM; Advanced Targeting Systems). We measured ventilation by whole body plethysmography in the unanesthetized rat. At 6 to 15 days following SP-SAP injection, ventilation during air breathing was reduced by 19 to 24% and the response to 7% CO2 inhalation was reduced by 22 to 30%. Subsequent immunohistochemistry showed dramatically reduced NK1R staining in the area of the SP-SAP injection, which is difficult to quantify given the small number of RTN neurons and the extensive NK1R distribution along neuronal processes. RTN neurons with NK1Rs provide both a tonic excitation for breathing and a portion of the response to systemic hypercapnia.

Related Products: SP-SAP (Cat. #IT-07)

Selective immunotoxin lesions of hindbrain norepinephrine/epinephrine (NE/E) neurons impair feeding and corticosterone responses and Fos-immunoreactivity in hypothalamic sites during insulin-induced hypoglycemia (IIH).

Sanders NM, Dinh TT, Pedrow C, Ritter S (2001) Selective immunotoxin lesions of hindbrain norepinephrine/epinephrine (NE/E) neurons impair feeding and corticosterone responses and Fos-immunoreactivity in hypothalamic sites during insulin-induced hypoglycemia (IIH). Neuroscience 2001 Abstracts 635.21. Society for Neuroscience, San Diego, CA.

Summary: Previously,we used the targeted immunotoxin saporin, conjugated to a monoclonal antibody against dopamine Beta-hydroxylase(DSAP),to destroy hypothalamic projecting NE/E neurons. Results showed that NE/E neurons are required for 2-deoxy-D-glucose induced feeding and Fos expression in the hypothalamus. In the present study,we used this same technique to determine if NE/E neurons play a similar role in mediating IIH responses.Rats were injected with DSAP or unconjugated saporin (SAP)into the hypothalamic paraventricular nucleus(PVH).Insulin reduced blood glucose to similar values in DSAP and SAP rats(15 and 17mg/dl, respectively). Glucagon responses to hypoglycemia were unaffected by DSAP,peaking at 597% and 504% of pre-drug levels after insulin in DSAP and SAP rats,respectively.In contrast,the corticosterone response was severely diminished in DSAP rats,peaking at only 123% of pre-insulin levels, compared to 353% in SAP rats.DSAP injections also abolished the feeding response to IIH.DSAP rats ate 0.9g of food during IIH while the SAP rats at 6.1g of food.DBH-ir was abolished in the A1/C1 overlap and reduced in A2,C2,C3 and A6 sites in DSAP rats. In the SAP rats,IIH induced Fos-ir in hindbrain NE/E neurons the PVH, LH and ARC.In DSAP rats, Fos-ir was reduced or abolished in these hypothalamic sites but was preserved in the adrenal medulla.These findings further support the role of hindbrain NE/E neurons in transmitting information from hindbrain glucoreceptive sites to hypothalamic circuits coordinating feeding and neuroendocrine responses to glucose deficit.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Dermorphin-saporin conjugate relieves inflammatory pain after peripheral application.

Palecek J, Paleckova V, Willis WD (2001) Dermorphin-saporin conjugate relieves inflammatory pain after peripheral application. Neuroscience 2001 Abstracts 508.10. Society for Neuroscience, San Diego, CA.

Summary: Opioid receptors have been shown to exist in specific population of DRG neurons signaling nociceptive information from peripheral tissues. In our study, we attempted to selectively destroy these neurons by using a peripheral application of the mu opioid agonist Dermorphin conjugated to ribosome inactivating toxin Saporin (DERM-SAP, Advanced Targeting Systems) in order to alleviate inflammatory pain. Intraarticular or intraplantar injection of carrageenan or CFA was used to induce inflammation in rats. The DERM-SAP conjugate was injected into the inflamed area 12-48h later. Responses of the animals to mechanical and thermal stimuli were tested before and after the inflammation and up to 21 days after the DERM-SAP application. The rats developed heat hyperalgesia in the affected paw 24 hours after the intraarticular CFA injection. In the saline injected group the hyperalgesia persisted for up to 19 days, but in the DERM-SAP injected group the signs of hyperalgesia were improving from day 7. Also mechanical allodynia tested with a VF filament (1.1g) was alleviated in the DERM-SAP group. In the carrageenan group, the DERM-SAP treatment decreased the heat hyperalgesia and prevented the development of hyperalgesia after repeated carrageenan application, 21days after the DERM-SAP treatment. Postmortem evaluation with a specific antibody showed presence of saporin in the DRG neurons. Our results show that peripheral application of DERM-SAP relieves inflammatory pain and suggest that peripheral application of neuropeptides conjugated to cell toxins or other substances such as antisense probes could be a useful tool for treating pain of peripheral origin. Supported by NIH grants NS09743 and NS11253.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)

Selective neonatal neurochemical lesions persist into old age and cause Alzheimer-like pathology.

de Butte M, Fortin T, Sherren N, Pappas BA (2001) Selective neonatal neurochemical lesions persist into old age and cause Alzheimer-like pathology. Neuroscience 2001 Abstracts 426.8. Society for Neuroscience, San Diego, CA.

Summary: There is a strong negative correlation between forebrain acetylcholine (ACH) function and the depth of Alzheimer’s dementia (AD). Forebrain norepinephrine (NE) is also frequently reduced in AD. However, it is not clear when these neurochemical abnormalities begin. Since there is some evidence to suggest that the AD begins early in life but fulminates with aging, it may also be the case that ACH and/or NE dysfunction occurs early and participates in the slide towards dementia in old age. To shed light on this possibility, we created lesions of forebrain ACH and NE in the neonatal rat by intracranial injection of 192 IgG saporin and systemic injection of 6-OHDA respectively, allowing the animals to reach old age. Massive ACH and NE lesions were evident at 22 months of age as reflected by immunohistochemical probes for p75 low affinity nerve growth factor and dopamine beta hydroxylase immunoreactive axons respectively. Morris water maze testing showed that surprisingly, the NE but not the ACH lesioned rats were impaired on this reference memory task. Typically, young NE lesioned rats are not impaired on it. The ACH lesion did not exacerbate the consequences of the NE lesion. On the other hand, unbiased stereological counts of hippocampal CA1 pyramidal cells indicated that the ACH lesion caused a significant loss of cells whereas the NE lesion had no effect by itself nor did it exacerbate the effects of the ACH lesion. These results indicate that selective NE and ACH lesions inflicted at birth, persist into old age. Furthermore, the NE lesion seemingly impairs memory in old age while the ACH lesion causes a loss of CA1 cells reminiscent of that which is a hallmark of AD.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Hypocretin-saporin (Hcrt-sap) as a tool to examine hypocretin function.

Gerashchenko D, Kohls MD, Greco MA, Waleh NS, Salin-Pascual R, Kilduff TS, Lappi DA, Shiromani PJ (2001) Hypocretin-saporin (Hcrt-sap) as a tool to examine hypocretin function. Neuroscience 2001 Abstracts 410.7. Society for Neuroscience, San Diego, CA.

Summary: The hypocretin (Hcrt) peptides are linked to narcolepsy. Humans with narcolepsy have decreased numbers of Hcrt neurons and Hcrt-null mice have narcoleptic symptoms. Hcrt neurons are located only in the lateral hypothalamus (LH) but neither lesions of this nor any other brain region have produced narcoleptic-like sleep, suggesting that specific neurons need to be destroyed. To facilitate lesioning the Hcrt neurons, the ribosome inactivating protein, saporin (SAP), was conjugated to Hcrt-2/orexin B. In vitro binding studies indicated specificity of Hcrt-SAP since it preferentially bound to CHO-cells containing the HcrtR2/OX2 receptor compared to the HcrtR1/OX1 receptor, but not to KNRK cells stably transfected with the NK1 receptor. In vivo specificity was confirmed since administration of the toxin to the LH eliminated some neurons (Hcrt, MCH, and histamine) but not others (alpha-MSH). When the toxin was administered to the LH, rats (n=19) had increased slow wave sleep, REM sleep, and sleep-onset REM sleep periods at night. These were negatively correlated with the loss of Hcrt-containing neurons (r=-0.74; p<0.01). Toxin applied to hypothalamic neurons that are not Hcrt positive but contain the Hcrt receptor lesioned the neurons but did not produce narcoleptic-like sleep. These findings indicate the utility of Hcrt-SAP as a tool and also demonstrate that damage to the LH that also includes a substantial loss of Hcrt neurons is likely to produce the sleep disturbances that occur in narcolepsy.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Long-term plastic changes in galanin innervation in rat basal forebrain.

Hartonian I, de Lacalle S (2001) Long-term plastic changes in galanin innervation in rat basal forebrain. Neuroscience 2001 Abstracts 254.1. Society for Neuroscience, San Diego, CA.

Summary: Galanin (GAL) immunoreactive (-ir) fibers hyperinnervate remaining cholinergic basal forebrain neurons in Alzheimer’s Disease (AD), perhaps exacerbating the cholinergic deficit. The purpose of our study is to determine whether a similar hyperinnervation of GAL-ir fibers occurs following intraparenchymal injection of 192-IgG saporin, a specific cholinergic neurotoxin, within the horizontal diagonal band of Broca (HDB), in 3-month-old rats, and to identify its origin. Immunotoxic lesions produced on average a 31% reduction in cholinergic cell counts on the lesioned side versus the spared side. Hyperinnervation of GAL-ir fibers was observed within and adjacent to the HDB in 28 out of 36 rats, and this effect persisted across time, with 6 months being the longest time examined. Morphometry revealed an increase in the number of GAL-ir cells on the lesioned basal forebrain, as compared to control. A similar change could not be detected in the number of GAL-ir neurons in the amygdala or the bed nucleus of the stria terminalis. Although there was no significant correlation in the amount of cell loss and of GAL hyperinnervation, we suggest that GAL hyperinnervation is triggered by the loss of cells because it is persistent across time. Our data suggests that this hyperinnervation is the result of overexpression of GAL in some cholinergic neurons of the basal forebrain. Since GAL is known to inhibit acetylcholine release, exacerbating the cholinergic dysfunction in AD, this model can be useful to test the efficacy of GAL inhibitors.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Light- and food-entrained circadian rhythms in rats with neurotoxic lesions of hypocretin cells.

Mistlberger RE, Antle MC, Jones M, Kilduff TS (2001) Light- and food-entrained circadian rhythms in rats with neurotoxic lesions of hypocretin cells. Neuroscience 2001 Abstracts 410.8. Society for Neuroscience, San Diego, CA.

Summary: The hypocretins (Hcrt1 & 2) are lateral hypothalamic (LH) neuropeptides implicated in the regulation of feeding and sleep-wake states. Hcrt lesions attenuate the amplitude of sleep-wake circadian rhythms in rats entrained to light-dark (LD; Gerashchenko et al, Soc. Neurosci Abst., 2000). We examined whether Hcrt cells also participate in the expression of circadian rhythms entrained by daily feeding schedules. Rats received LH injections of Hcrt2 conjugated to the ribosome- inactivating protein saporin. Drinking was recorded in LD 12:12 for 1-2 months, in DD for 48 h, and in LD 2:2 for 24 h, to assess photic entrainment and masking. The rats were then restricted to a 3 h daily meal beginning 6 h after lights-on (LD 12:12). After 29 days, the rats were deprived of food for 50 h. Lesions, assessed by immunocytochemistry using preprohypocretin antibody (Chemicon Int., Inc.), ranged from 0-100% complete. Complete lesions were associated with attenuated mean level and amplitude of circadian drinking rhythms in LD 12:12 and DD, but photic masking in LD 2:2 was unaffected. All rats exhibited food-entrained activity that anticipated feeding time by 1-3 h. This was of lower magnitude in the rat with the largest lesion. These results are consistent with a recent report that Hcrt2-saporin lesions attenuate sleep-wake circadian rhythms, but differ from earlier reports that electrolytic lesions of the LH may potentiate the masking effects of light on behavior. The results suggest that Hcrt cells do not play an essential role in the regulation of circadian rhythms by scheduled feeding.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Estrogen enhancement of learning requires intact basal forebrain cholinergic neurons.

Gibbs RB (2001) Estrogen enhancement of learning requires intact basal forebrain cholinergic neurons. Neuroscience 2001 Abstracts 312.12. Society for Neuroscience, San Diego, CA.

Summary: We have shown that long-term continuous estrogen replacement, or weekly administration of estrogen plus progesterone, enhances acquisition of a delayed matching-to-position (DMP) spatial memory task. The present study examined whether hormone replacement enhances acquisition of the task after destroying basal forebrain cholinergic neurons with the selective immunotoxin 192IgG-saporin (SAP). Ovariectomized Sprague-Dawley rats received either SAP (1.0 Μg in 1.0 ΜL saline) or vehicle injected directly into the medial septum. Two weeks later, animals received either continuous estrogen replacement (E; 3 mm silastic capsule containing 17-β-estradiol, implanted s.c.) or weekly administration of estradiol (10 Μg in oil s.c.) followed two days later with progesterone (500 Μg in oil s.c.). Controls received sham implantation surgery and vehicle injections. DMP training began after 1 month of treatment. SAP injections significantly impaired acquisition of the DMP task (median days to criterion = 21.0 for SAP-treated animals vs. 14.0 for Ovariectomized controls; p<0.05). Neither continuous E replacement nor weekly administration of E+P significantly enhanced acquisition in the SAP-treated animals. Histology and hippocampal ChAT activity confirmed the loss of cholinergic cells in the medial septum and diagonal band of Broca in SAP treated animals. These findings suggest that cholinergic neurons in the medial septum/diagonal band are necessary for hormone-mediated enhancement of DMP acquisition. Studies using lower doses of SAP are currently underway.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top