zap-conjugates

164 entries

Mab-ZAP binds to Fc portion of mouse IgG

Q: Does Mab-ZAP (Cat. #IT-04) bind to the FC portion of mouse IgG?

A: The antibody used to create our Mab-ZAP (IT-04), will react with whole molecule mouse IgG, which includes the Fc portion and the two antigen binding Fab portions.

Related Products: ZAP Conjugates

FabFc-ZAP cross-reaction with another species

Q: Can your FabFc-ZAP human (Cat# IT-65) bind to the Fc portion of another species, such as mouse IgG? It looks like it binds to mouse IgG in our assay.

A: The antibody used to create our FabFc-ZAP Human (IT-65), can react with the Fc (gamma) portion of human IgG heavy chain and should not react with the Fab portion of human IgG. However, there could be minimal cross-reaction with mouse, horse, or bovine serum proteins, and it is possible to see cross-reaction with immunoglobulins from other species. 

Related Products: ZAP Conjugates

Comparison of CD3e antibody and CD3e-sZAP immunotoxin treatment in mice identifies szap as the main driver of vascular leakage

Kim S, Shukla RK, Kim E, Cressman SG, Yu H, Baek A, Choi H, Kim A, Sharma A, Wang Z, Huang CA, Reneau JC, Boyaka PN, Liyanage NPM, Kim S (2022) Comparison of CD3e antibody and CD3e-sZAP immunotoxin treatment in mice identifies szap as the main driver of vascular leakage. Biomedicines 10(6):1221. doi: 10.3390/biomedicines10061221

Objective: Investigate and identify the toxicity profiles of a CD3e-mAb and an immunotoxin of this CD3e antibody conjugated to saporin via a biotin-streptavidin bond, S-CD3e-IT.

Summary: The two agents had opposite effects on T cells, with the antibody alone able to modulate CD3e on the cell surface while the S-CD3e-IT caused depletion of the cell. The immunotoxin increased the infiltration of polymorphonuclear leukocytes (PMNs) into the tissue parenchyma of the spleen and lungs, a sign of vascular permeability while the antibody alone showed no signs of vascular leakage.

Usage: S-CD3e-IT was prepared by reacting biotinylated CD3e antibody with Streptavidin-ZAP in a 1:1 molar ratio. C57BL/6J mice received 25 μg of S-CD3e-IT in sterile 200 μL PBS, twice a day via retro-orbital injection for four days.

Related Products: Streptavidin-ZAP (Cat. #IT-27)

Dosage of Fab-ZAP for antibody concentration

Q: Is the dosage of Fab-ZAP always enough for any level of antibody concentration?

A: The 4.5 nM dosage of Fab-ZAP is the recommended concentration.  We do not typically see unspecific killing at 4.5 nM on most cell lines.  If the concentration of Fab-ZAP is increased, it may undergo bulk-phase endocytosis and kill cells indiscriminately.  A lower concentration of Fab-ZAP may lead to antibody competition, resulting in a lack of killing of cells at the highest concentration of antibody.

Related Products: ZAP Conjugates

Recommended ratio between Fab-ZAP dosage and antibody concentration

Q: Is there a recommended ratio between Fab-ZAP dosage and antibody concentration?

A: A recommended good starting point is 4.5 nM of Fab-ZAP, with a titration of the antibody starting at a concentration of 10 nM.

Related Products: ZAP Conjugates

Fab-ZAP number of replications

Q: Each concentration is suggested to perform 6 replications, can it be adjusted more or less in practice?

A: Yes, the assay design is meant to be a thorough approach but can be adjusted by the user. We recommend 6 replications based on our 96-well plate template design. The concentration of Fab-ZAP is 4.5 nM in the suggested protocols.

Related Products: ZAP Conjugates

Detecting the targeted antibody in supernatant

Q: Can Fab-ZAP detect the targeted antibody still in supernatant?

A: As long as there is nothing in the supernatant inhibiting the reactivity of Fab-ZAP, it should work.  We do not typically recommend this, but in theory it should be possible.  I would be cautious of this approach based off of the presumed lack of established concentration of antibody.

Related Products: ZAP Conjugates

DMSO% for peptide and Streptavidin-ZAP

Q: Instead of performing the reaction between our biotinylated peptide and Streptavidin-ZAP at the initially provided concentration of Strep-ZAP (20 µM), is it OK if the reaction is done at a 10-fold more dilute concentration? This request is to ensure we don’t have any solubility problems with our very tricky lipophilic peptide. Our protocol would be to first dilute Streptavidin-ZAP to 2 µM with PBS and then add the peptide in DMSO (10% final), and store the aliquoted resulting 1.82 µM solution?

A: In regards to your question, while keeping in mind your solubility concerns, we suggest that you:

  1. Proceed with diluting the Streptavidin-ZAP to 2 uM with PBS as you suggest, BUT, only react the amount of Streptavidin-ZAP necessary for the next step.
  2. Store the undiluted and unreacted Streptavidin-ZAP at -80°C until you’re ready for more conjugate.

We understand the solubility of the peptide is a concern, and rightfully so.  However, we also do not want to compromise the Streptavidin-ZAP during storage, considering its value.

Related Products: ZAP Conjugates

ZAP Internalization Kit Concentrations

Q: We have your ZAP internalization kit and I have a question regarding the concentrations used in the cytotoxicity assay. The Hum-ZAP used in the assay (mentioned in the PDF protocol) is 4.5 nM and the target agent was 10 nM to 1 fM. Is there a stoichiometric relation between Hum-ZAP and the target agent concentrations?

A: To answer your question simply, yes, there is a stoichiometric relation between a secondary conjugate and the targeting agent.

Q: If I use higher concentrations of the target antigen, then should I also increase the concentration of Hum-ZAP?

A: It may be intuitive to think that using a higher dose of primary antibody induces a higher amount of cell death, but as seen in the attached figure, at the highest concentration of 192-IgG (10 nM = Log -8) there is a lessened amount of killing, at a 25-fold lower concentration, as compared to the antibody. The explanation for this is that, at the higher concentrations of primary antibody, there is more unconjugated 192-IgG and fewer 192-IgG+Fab-ZAP complexes. The free 192-IgG then out-competes the conjugates for cell surface binding sites which, in turn, decreases the amount of Saporin being internalized, hence less cell death.

Related Products: ZAP Conjugates

Saporin as a commercial reagent: its uses and unexpected impacts in the biological sciences-tools from the plant kingdom

Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA (2022) Saporin as a commercial reagent: its uses and unexpected impacts in the biological sciences-tools from the plant kingdom. Toxins (Basel) 14(3):184. doi: 10.3390/toxins14030184 PMID: 35324681

Summary: Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.

Read complete article.

Shopping Cart
Scroll to Top