1. Home
  2. Knowledge Base
  3. targeted-toxins

targeted-toxins

2118 entries

Saporin Safety

Over the years, ATS has frequently been asked about Saporin’s safety for use in the lab as well as when used clinically. Residual awareness of alternate Ribosome-Inactivating Proteins (RIPs) and ‘toxins’ such as Ricin have caused some researchers new to the use of RIPs to question the belief that Saporin is safe. Unlike Type 2 RIPs (such as Ricin), Type I RIPs, like Saporin have no binding chain and consequently no means of entering the physiological space necessary for the protein to act as a toxin. The following is a review of safety in handling and potential toxicity within the human body for systemic events not related to normal research applications of Saporin conjugates, including Substance P-Saporin (SP-SAP), which is a therapeutic under development for the treatment of chronic pain.

The acute LD50 for saporin in mice (25 g) is 6.8 mg/kg;[1] that would translate in humans (75 kg) to 510 mg! A concentration of about 100 nM is the threshold to see even a vague hint of saporin toxicity. In human blood, that would correspond to 24 mg injected systemically into a person. The fermentation process to produce recombinant saporin has a titer of 2 mg/L meaning that the production broth itself contains no more than 67 nM concentration of saporin. Furthermore, the final protein concentrations from production batches of recombinant Saporin used in our drug are 4 mg/ml, meaning 6 mL of final material would need to accidentally end up in a human before the ‘hint of toxicity’ threshold would potentially be met.

The toxicology studies of SP-SAP contained within ATS’s IND prior to the current human Phase I clinical trial evaluated effects related to the intended method of administration, intrathecal local injection. SP-SAP is not expected to ever be a self-administered therapy, so the effects of gross off-target events, such as accidental auto-injection, swallowing, spillage, or immersion were not considered.

The table below[2] highlights antibody-saporin conjugates approved by the FDA for Phase I/II clinical trials in humans. The therapeutics listed below were administered intravenously and imply what the FDA accepted as non-toxic levels of saporin-based conjugates in these studies.

Looking more closely at the study by French et al.,[3] several milligrams of antibody conjugate were repeatedly injected into human patients under a FDA regulated clinical trial and peak serum levels tested, demonstrating rapid clearing of saporin from the system.

As a company that specializes in Saporin, our two-plus decades of experience working with the protein in research, preclinical, and clinical environments has taught us that with minimal standard laboratory precautions users are not at any real risk of toxic effects. Even our CSO, after 30+ years of working with Saporin exhibits undetectable levels of Saporin antibodies in his blood!

References:

  1. Thorpe PE et al. An immunotoxin composed of monoclonal anti-thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst 75:151-159, 1985.
  2. Polito L et al. Immunotoxins and other conjugates containing saporin-s6 for cancer therapy. Toxins (Basel) 3(6):697-720, 2011.
  3. French RR et al. Response of B-cell lymphoma to a combination of bispecific antibodies and saporin. Leuk Res 20(7):607-17, 1996.

Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

Vierck C, Yezierski R, Wiley R (2016) Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat. Neuroscience 319:23-34. doi: 10.1016/j.neuroscience.2016.01.038

Objective: There is a large amount of research on the involvement of cholinergic mechanisms on spinal transmission of pain signals, indicating that cholinergic agonists can attenuate this kind of pain. In contrast, some studies have shown affective reactions to pain are suppressed by cholinergic antagonists. The authors investigated the disagreement between reflexive and affective reactions.

Summary: Lesioned rats displayed decreased escape from thermal stimulation, as well as loss of the normal hyperalgesic effect of sound stress. Results indicate that the basal forebrain cholinergic system plays a role in central processing of pain.

Usage: Administration of 192-IgG-SAP with a 4-μg injection into the left lateral ventricle of rats. Animals were tested in temperature escape and sound stress models.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Featured Article: Cerebral cholinergic lesion reduces operant responses to unpleasant thermal stimuli

Wiley RG (2016) Featured Article: Cerebral cholinergic lesion reduces operant responses to unpleasant thermal stimuli. Targeting Trends 17(2)

Related Products: 192-IgG-SAP (Cat. #IT-01)

Read the featured article in Targeting Trends.

Locus coeruleus and tuberomammillary nuclei ablations attenuate hypocretin/orexin antagonist-mediated rem sleep.

Schwartz M, Nguyen A, Warrier D, Palmerston J, Thomas A, Morairty S, Neylan T, Kilduff T (2016) Locus coeruleus and tuberomammillary nuclei ablations attenuate hypocretin/orexin antagonist-mediated rem sleep. eNeuro 3:ENEURO.0018-0016.2016. doi: 10.1523/ENEURO.0018-16.2016

Summary: To examine the mechanism by which the Orexin 1r/Orexin 2r antagonist almorexant decreases wakefulness and increases NREM and REM sleep the authors utilized Anti-DBH-SAP (Cat. #IT-03) and Orexin-B-SAP (Cat. #IT-20). Rats received 3-μg injections of Anti-DBH-SAP into the LC, or bilateral 57-80 ng injections of Orexin-SAP into the TMN. Both conjugates attenuated the increased REM sleep seen upon administration of almorexant without altering almorexant-induced changes in NREM sleep.

Related Products: Anti-DBH-SAP (Cat. #IT-03), Orexin-B-SAP (Cat. #IT-20)

Dynamics of spinal microglia repopulation following an acute depletion.

Yao Y, Echeverry S, Shi X, Yang M, Yang Q, Wang G, Chambon J, Wu Y, Fu K, De Koninck Y, Zhang J (2016) Dynamics of spinal microglia repopulation following an acute depletion. Sci Rep 6:22839. doi: 10.1038/srep22839

Summary: This study confirms that similar to microglia in the brain, spinal microglia can repopulate rapidly following elimination, which is driven essentially by a self-renewal process. To deplete microglia in spinal cords, Mac-1-SAP (Cat. #IT-06) was injected i.t. (7 μl, 1.6  μg/μl) at the level of L4-L5 in mouse. The results support the concept that microglia repopulation, whether in the brain or in the spinal cord, is the consequence of onsite resident microglia proliferation. Newly generated microglia are fully functional and are able to respond to peripheral nerve injury and contribute to the development of neuropathic pain.

Related Products: Mac-1-SAP mouse/human (Cat. #IT-06)

Role of the RVM in descending pain regulation originating from the cerebrospinal fluid-contacting nucleus.

Fei Y, Wang X, Chen S, Zhou Q, Zhang C, Li Y, Sun L, Zhang L (2016) Role of the RVM in descending pain regulation originating from the cerebrospinal fluid-contacting nucleus. Neurochem Res 41:1651-1661. doi: 10.1007/s11064-016-1880-6

Summary: The researchers investigated whether the CSF-contacting nucleus contributed to descending pain modulation in normal and neuropathic rats, and detected the 5-HT expression changes in both RVM and spinal dorsal cord. They also detected the possible anatomical and function correlation between the CSF-contacting nucleus and the RVM. Targeted ablation of the CSF-contacting nucleus was performed using CTB-SAP (Cat. #IT-14; 500 ng/3 μl), which was administered i.c.v. to the normal rats and rats 7 days before the CCI procedure. Based on the findings of the present study, they believe that the CSF-contacting nucleus may act as a component of descending pain regulation system. RVM, which acts as an important brain nucleus, is involved in the relay of nociceptive information between the CSF-contacting nucleus and spinal cord. Moreover, RVM 5-HT system plays a critical role in descending pain inhibition originating from the CSF-contacting nucleus.

Related Products: CTB-SAP (Cat. #IT-14)

Functional characterization of a mouse model for central post-stroke pain.

Gritsch S, Bali K, Kuner R, Vardeh D (2016) Functional characterization of a mouse model for central post-stroke pain. Mol Pain 12:1744806916629049. doi: 10.1177/1744806916629049

Summary: While clinical evidence has pointed toward central pain pathway dysfunction in central post-stroke pain (CPSP), the underlying mechanisms have not been defined. In this work the authors created a mouse model of CPSP through lesions of the thalamic ventral posterolateral nucleus. In order to examine the role of neurokinin-1 receptor-expressing (NK1R) neurons in lamina I/III of the spinal cord in the development and maintenance of CPSP the authors administered 1 μmol intrathecal injections of SSP-SAP (Cat. #IT-11). Saporin (Cat. #PR-01) was used as a control. While the NK1R+ neurons in the spinal cord were not involved in establishing CPSP, the data indicate that sensory changes in the mice are comparable to those observed in human patients with CPSP.

Related Products: SSP-SAP (Cat. #IT-11), Saporin (Cat. #PR-01)

Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets.

Wang L, Conner J, Nagahara A, Tuszynski M (2016) Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets. Proc Natl Acad Sci U S A 113:2750-2755. doi: 10.1073/pnas.1514682113

Summary: Rehabilitation is often prescribed after brain injury, but the basis for how training can influence brain plasticity and recovery is unclear. In this study, the authors show that intense rehabilitation training after focal brain injury drives significant structural changes in brain cells located adjacent to the injury. Importantly, a key brain modulatory system, the basal forebrain cholinergic system, is required for enabling rehabilitation to impact brain structure. Rats underwent cholinergic ablations by injecting 192-IgG-Saporin (Cat. #IT-01) into the nucleus basalis (0.2-0.25 mcl of 0.375 mg/ml solution in artificial CSF). Damage to the cholinergic system, which can occur naturally during aging, completely blocks brain plasticity mediated by rehabilitation and significantly attenuates functional recovery. These results provide new insights into how rehabilitation may promote recovery and suggest that brain cholinergic systems may be a possible therapeutic target for influencing recovery.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

Vazquez-DeRose J, Schwartz M, Nguyen A, Warrier D, Gulati S, Mathew T, Neylan T, Kilduff T (2016) Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct 221:923-940. doi: 10.1007/s00429-014-0946-y

Summary: The basal forebrain (BF) is one of the regions receiving excitatory input from orexin neurons. The authors investigated the hypothesis that orexin antagonists induce sleep at least in part by interfering with the facilitation of BF neurons. Rats received bilateral 500-ng injections of 192-IgG-SAP (Cat. #IT-01) into the BF. Lesioned animals displayed no abnormal responses to a benzodiazepine agonist or vehicle. An orexin antagonist, however, was less effective than the control at inducing sleep in lesioned rats.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Ablation of KNDy neurons results in hypogonadotropic hypogonadism and amplifies the steroid-induced LH surge in female rats.

Mittelman-Smith M, Krajewski-Hall S, McMullen N, Rance N (2016) Ablation of KNDy neurons results in hypogonadotropic hypogonadism and amplifies the steroid-induced LH surge in female rats. Endocrinology 157:2015-2027. doi: 10.1210/en.2015-1740

Summary: KNDy neurons are a subpopulation of neurons in the infundibular nucleus that coexpress estrogen receptor α, kisspeptin, and neurokinin B (NKB) mRNA. Previous work indicated that altered signaling from KNDy neurons may play a role in the low levels of circulating sex steroids found in hypogonadotropic hypogonadism. Rats received bilateral 10-ng injections of NK3-SAP (Cat. #IT-63) dorsal to the arcuate nucleus. Blank-SAP (Cat. #IT-21) was used as control. In animals with intact ovaries the NK3-SAP lesion resulted in hypogonadotropic hypogonadism. In contrast, the LH surge in lesioned ovariectomized rats was 3-fold higher, demonstrating that KNDy neurons are integral for the control of serum LH levels, estrous cyclicity, and may also have some control over the magnitude of the LH surge.

Related Products: NKB-SAP (Cat. #IT-63), Blank-SAP (Cat. #IT-21)

Shopping Cart
Scroll to Top