sfn2019

18 entries

Leptin receptor activity in the nucleus of the solitary tract increases forebrain leptin sensitivity

Harris RB (2019) Leptin receptor activity in the nucleus of the solitary tract increases forebrain leptin sensitivity. Neuroscience 2019 Abstracts 591.04. Society for Neuroscience, Chicago, IL.

Summary: We previously reported that fourth ventricle infusions of leptin that cause weight loss are associated with an increase in hypothalamic phosphorylation of signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor (ObRb) activation, implying an integrated response to central leptin. This study tested the impact of ObRb activity in the nucleus of the solitary tract (NTS) on sensitivity to leptin in the forebrain. Leptin-Saporin (Lep-Sap) injections were used to delete ObR- expressing neurons in the NTS of 300g male Sprague Dawley rats. Controls were injected with Blank-Saporin (Blk-Sap). Loss of NTS ObR was confirmed with RNAScope in situ hybridization and pSTAT3 response to peripheral leptin in representative Lep- Sap rats. Experimental rats were fitted with 3rd ventricle (3V) guide cannula 12 days after Lep-Sap or Blk-Sap injections. Nine days later cannula placement was tested with Angiotensin II and rats were adapted to calorimeter cages for 4 days. Lep-Sap had no effect on body weight. To test leptin responsiveness rats were food deprived for 5 hours and at 5 p.m. they received 3V injections of 0, 0.05, 0.1, 0.25 or 0.5 μg leptin. Food was returned at 6 p.m., the start of the dark period. Each rat received the injections in random order at 4 day intervals. At the end of the experiment NTS pSTAT3 was used to confirm effcacy of Lep-Sap injections. Seven Lep-Sap and 6 control Blk-Sap rats completed the experiment. There was a dose-dependent inhibition of food intake in Blk-Sap rats, but only 0.5 μg leptin inhibited intake of Lep-Sap rats. Intake was inhibited during the 24 hours following injection and was not compensated for so that cumulative intake was inhibited for 60 hours post-injection. Energy expenditure was not different between groups and respiratory exchange ratio tended to follow food intake. These data suggest that leptin- induced inhibition of food intake is mediated by an integrated network involving both the forebrain and hindbrain and that activation of NTS ObRb lowers the threshold for leptin responsiveness in the forebrain.

Related Products: Leptin-SAP (Cat. #IT-47)

Medial septum cholinergic signaling regulates gastrointestinal-derived vagus sensory nerve communication to the hippocampus

Suarez AN, Liu CM, Cortella AM, Noble EN, Kanoski SE (2019) Medial septum cholinergic signaling regulates gastrointestinal-derived vagus sensory nerve communication to the hippocampus. Neuroscience 2019 Abstracts 601.19. Society for Neuroscience, Chicago, IL.

Summary: The vagus nerve delivers bi-directional communication between feeding-relevant gastrointestinal (GI) signals and the brain. Vagal sensory-mediated GI satiation signals, including gastric distension and intra-gastric nutrient infusion, activate neurons in the hippocampus (HPC). Recent work from our lab revealed that selective GI-derived vagal sensory signaling is required for HPC-dependent episodic and visuospatial memory, effects accompanied by reduced dorsal HPC (dHPC) expression of neurotrophic and neurogenic markers. To investigate the neural pathways mediating gut regulation of hippocampal-dependent memory, here we investigate the hypothesis that GI-derived signals communicate to dHPC neurons via cholinergic input from the medial septum, a memory-promoting pathway that is vulnerable to disruption in various degenerative dementia diseases. To explore this putative gut-to-brain pathway, we administered 192IgG-saporin, a neurotoxin that selectively kills cholinergic neurons via apoptosis, in the medial septum to determine whether septal cholinergic neurons regulate vagally-mediated neuronal activation in dHPC. Results revealed that elimination of cholinergic neurons in the MS reduced peripherally-administered cholecystokinin (CCK)-induced c-Fos expression in the dHPC, suggesting that cholinergic inputs from the MS transmit GI-derived signaling to the dHPC. Consistent with this interpretation, dHPC protein expression of vesicular acetylcholine transporter (VAChT), which promotes memory function and acetylcholine release without disrupting other co- released molecules, was significantly reduced in rats with GI-specific vagal sensory ablation via nodose ganglion injections of CCK conjugated to saporin. Collectively these results suggest that GI-derived vagal sensory signaling infuences memory function via enhancement of MS cholinergic signaling to the dPHC.

Related Products: 192-IgG-SAP (Cat. #IT-01), CCK-SAP (Cat. #IT-31)

In vivo monitoring of cholinergic neurotransmission with a microelectrochemical choline biosensor

Cunningham C, Lowry JP (2019) In vivo monitoring of cholinergic neurotransmission with a microelectrochemical choline biosensor. Neuroscience 2019 Abstracts 614.03. Society for Neuroscience, Chicago, IL.

Summary: Acetylcholine acts as a key neuromodulator within the central nervous system, capable of altering neuronal excitability and coordinating neuronal firing patterns. Conversely, cholinergic neurotransmission plays a crucial role in a variety of cognitive functions, including the encoding of new memories. Cholinergic neuronal loss, and the resulting drop in cholinergic neurotransmission (collectively referred to as hypocholinergia), is closely associated with cognitive dysfunction in a number of chronic neurodegenerative disorders including Alzheimer’s disease. However, conventional analytical techniques for monitoring in vivo cholinergic neurotransmission lack the spatiotemporal resolution required to accurately detect endogenous cholinergic dynamics. Here we validate in mice a Pt-based electrochemical biosensor for selective monitoring of choline, a verified marker of cholinergic transmission. Enzymatic choline biosensors (modified with choline oxidase) were sterotaxically implanted in the medial prefrontal cortex (mPFC) and contralateral dorsal hippocampus (dHPC) of female C57Bl6J mice. Real-time choline current recordings over a period of several days revealed circadian fluctuations in both regions, with extracellular choline levels highest during light phases. Administration of pharmacological compounds known to induce central acetylcholine release, scopolamine (1mg/kg) and amphetamine (4mg/kg), evoked a robust increase in choline current. In contrast, peripheral injection of the reversible acetylcholinesterase inhibitor, donepezil (3mg/kg), produced a marked decrease in recorded choline current. The induction of systemic infammation with bacterial lipopolysaccharide (LPS; 500µg/kg) produced characteristic ‘sickness behaviour’ in mice and evoked a tonic rise in central choline levels in both the mPFC and dHPC. Furthermore, the induction of hypocholinergia in selected mice was preformed via intracerebroventricular injections of murine-p75-saporin immunotoxin (1.2µg). Evoked cholinergic neurotransmission was dramatically attenuated in lesioned (hypocholinergic) mice. Collectively, the data suggests that microelectrochemical choline biosensors may serve as a powerful tool for monitoring cholinergic neurotransmission across a number of behavioural and disease states.

Related Products: mu p75-SAP (Cat. #IT-16)

The role of subcortical hippocampal inputs in contextual memory formation

Grayson VS, Han Y, Guedea AL, Jovasevic V, Gao C, Apkarian A, Radulovic JM (2019) The role of subcortical hippocampal inputs in contextual memory formation. Neuroscience 2019 Abstracts 786.03. Society for Neuroscience, Chicago, IL.

Summary: The role of cortical efferents to the hippocampus in the formation of episodic-like memory is well established, however, less is known about the contribution of subcortical memory circuits to memory. In the present study, we studied the roles of several subcortical inputs into the dorsal hippocampus in mouse models of contextual fear conditioning, extinction, and reinstatement. Fear conditioning was induced by a single exposure of mice to a context followed by foot shock. Subsequently, mice were exposed to daily extinction trials. After significant reduction of freezing, indicating successful extinction, mice were exposed to a brief reminder shock and re-tested in the conditioning context. Circuit manipulations were performed by chemogenetic silencing with the inhibitory designer receptor exclusively activated by designer drugs (DREADD) hM4(Gi) or targeted cholinergic depletion induced by 192 IgG-saporin, at different stages of fear conditioning, extinction, and reinstatement. We identified projection- and neurotransmitter-specific roles of discrete circuits, indicating complex regulation of fear-inducing memories by subcortical afferents.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Increased transplantation efficacy of mesenchymal stem cell by focused ultrasound and improvement of the spatial memory in the 192 IgG-saporin rat model

Lee J, Seo Y, Shin J, Kong C, Na Y, Chang W, Chang J (2019) Increased transplantation efficacy of mesenchymal stem cell by focused ultrasound and improvement of the spatial memory in the 192 IgG-saporin rat model. Neuroscience 2019 Abstracts 048.01. Society for Neuroscience, Chicago, IL.

Summary: Introduction: Stem cell therapy has been found to have therapeutic effects in neurodegenerative disease, but traditional transplant methods, such as parenchymal or intravenous injection, possess limitations like secondary injuries, infection, and low survival rate of stem cells in the brain. Meanwhile, recently the focused ultrasound(FUS) was found to have promising results regarding transplantation of stem cells into the rat brain. However, the mechanism of stem cell transplantation with FUS and possibility of cognitive recovery remain elusive. Therefore, this study investigates a possibility for non-invasive focused ultrasound use in stem cell transplantation into the brain of dementia rat model. Materials & methods: We divided rats into five groups: Normal, Lesion, Cell only, FUS + Cell, and FUS only. We used 192 IgG-saporin for degeneration of basal forebrain cholinergic neuron and it was injected into all rats except for the normal group. After a week, 5p mesenchymal stem cells (MSC: 3*106/200ul) were injected in the tail vein of all rats of the cell only and FUS + Cell group, and the FUS + Cell group received the FUS three hours before cell transplantation. FUS was applied with parameters of 0.25Mpa, 300s (Targeted hippocampal region: AP -3.5, ML ±2). And last, FUS only group was received only FUS without any treatment. Five weeks after transplantation, rats performed the Morris water maze test. Results: MSC were detected in both cell only and FUS + Cell group of the hippocampus region. After comparing FUS+MSC & cell only rats, it was confirmed that FUS increases MSC homing in the sonicated rat’s brain. In addition, the most effective memory restoration occurred in the FUS + Cell group. Moreover, the FUS + Cell group exhibited better recall of the platform position than the other groups. And FUS only group did not recover. Conclusion: Noninvasive FUS can increase the efficacy of stem cell delivery. And memory impairment due to cholinergic denervation can be effectively improved by cell transplantation with FUS. The results of this study suggest possibility of stem cell homing and therapeutic effects of the FUS in dementia rat model. However, further study regarding the function of stem cells transplanted in the brain and a more detailed mechanism of stem cell homing by FUS is needed.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Selective loss of septohippocampal cholinergic projections is associated with more circuitous homeward progressions

Osterlund JR, BLackwell AA, Lipton M, Castillo V, Kartje GL, Tsai S-Y, Wallace DG (2019) Selective loss of septohippocampal cholinergic projections is associated with more circuitous homeward progressions. Neuroscience 2019 Abstracts 789.11. Society for Neuroscience, Chicago, IL.

Summary: Rodents rely on self-movement cues as a source of information to maintain spatial orientation during exploration. The vestibular system provides a source of self-movement cues that are processed by the septohippocampal cholinergic system, and when damaged, disruptions in movement organization are observed. The current study examined the effects of medial septum infusion of 192 IgG-saporin on movement organization during a single exploratory session that limited rats to using only self-movement cues. Rats organize their exploratory behavior into stops and progression. Although stops occur throughout the environment, they tend to cluster within a restricted area indicative of home base establishment. In the current study, movement organization characteristics and home base stability were similar between the lesion and sham groups. However, the lesion group exhibited greater path circuity during progressions returning to the home base. Increases in path circuitry have been implicated in spatial disorientation, indicating a role for medial septum cholinergic projections in processing self-movement cues to maintain spatial orientation. These results provide a foundation for future work to investigate the efficacy of interventions that enhance neuroplasticity within the septohippocampal cholinergic system.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Nociceptors expressing TRPV1 and trigeminal nucleus neurons expressing NK1 mediate orthodontic pain

Wang S, Kim M, Ong K, Pae E-K, Chung M-K (2019) Nociceptors expressing TRPV1 and trigeminal nucleus neurons expressing NK1 mediate orthodontic pain. Neuroscience 2019 Abstracts 052.10. Society for Neuroscience, Chicago, IL.

Summary: Orthodontic force produces mechanical irritation and inflammation in periodontium, which inevitably accompanies pain. Despite its high prevalence, treatment of orthodontic pain is not effective. Determining detailed neural mechanisms involving peripheral and central nervous system should be critical to improve the management of orthodontic pain. Periodontal ligament is projected by peptidergic nociceptors, which is enriched with transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin. Trigeminal subnucleus caudalis (Vc), is critical for relaying orofacial nociceptive signal into brain. A group of second- order neurons in the superficial dorsal horn of Vc express neurokinin 1 receptor (NK1), a receptor for substance P, and receive inputs from peptidergic nociceptors. However, the contribution of these nociceptive neurons to orthodontic pain has not been determined. Orthodontic force of 10g produced reliable tooth movement in mice. Orthodontic pain was evaluated by measuring mouse grimace scale (MGS) and bite force (BF), which could represent spontaneous pain and chewing-evoked pain, respectively. Orthodontic force increased MGS and decreased BF, which peaked at 1d and returned near to sham level at 7d. Using targeted chemical ablation of specific subsets of neurons, we determined the contribution of TRPV1+ nociceptors and NK1+ Vc neurons to orthodontic pain behaviors in mice. Ablation of TRPV1+ nociceptors by injecting resiniferatoxin into trigeminal ganglia significantly attenuated orthodontic force assessed by MGS and BF. Chemical ablation of NK1+ Vc neurons by injecting saporin conjugated with substance P into Vc also significantly reduced the extent of changes in MGS and BF by orthodontic force. These results suggest that TRPV1+ trigeminal nociceptors and NK1+ Vc neurons constitute a major neural pathway for transmission of orthodontic pain, which is a fundamental neural mechanism of orthodontic pain transmission. The new mouse model of orthodontic pain will be useful for mechanistic study to develop novel approaches for painless orthodontics.

Related Products: SSP-SAP (Cat. #IT-11)

A high efficacy selection method for transfected cells utilizing recombinant isolectin B4-saporin

Galvan MA, Shramm PA, Bouajram R, Lappi DA, Ancheta LR (2019) A high efficacy selection method for transfected cells utilizing recombinant isolectin B4-saporin. Neuroscience 2019 Abstracts 794.10. Society for Neuroscience, Chicago, IL.

Summary: Transfection protocols often rely on the use of antibiotics for the selection of transfected cells and has become the accepted approach for in vitro research and therapeutic applications. Antibiotics have several shortcomings such as cost, continuous use, and harmful effects — even on the transfected cell population. In addition, selection pressures are often inefficient and fail to provide a population of cells that express the gene of interest (GOI) at high levels. We have used three separate GOI’s to select for solely high-expressing transfectants using targeted toxin selection pressure. Normal Rat Kidney Cells (KNRK) were individually transfected to express green fluorescent protein (GFP), melanopsin or the low-affinity nerve growth factor receptor (p75) using an innovative new transfection delivery vector called pGEI. The results from various assays were utilized to visually determine the expression rate and pattern of the targeted toxin selection method. Melanopsin and p75 — a photopigment and nerve growth factor, respectively — were of great interest to express in our transfected cells as a means to study their role in the development and function of neurons. The delivery vector, pGEI, removes resident Galalpha(1-3)Gal epitopes from non- human mammalian cell surfaces. This residue is the target of recombinant Isolectin B4 – Saporin (IB4-SAP), a selective targeted toxin. IB4-SAP is extremely potent, with an EC50 in the low picomolar range for alpha-D-galactopyranoside expressing cells in vitro. The cells with the highest expression of the inserted vector, and therefore the GOI, will have these residues removed. Those that fail to express the vector or do not express the vector in high enough amounts, will not have all the residues removed, and will be targeted and eliminated via IB4-SAP. This method of selection provides a means of purifying the highest- expressing transfected populations using a more cost-effective and time-saving approach.

Related Products: IB4-SAP (Cat. #IT-10)

An acetylcholine-dopamine interaction in the rat nucleus accumbens and its tentative involvement in ethanol’s dopamine-liberating effect

Andrén A, Adermark L, Söderpalm B, Ericson M (2019) An acetylcholine-dopamine interaction in the rat nucleus accumbens and its tentative involvement in ethanol’s dopamine-liberating effect. Neuroscience 2019 Abstracts 079.08. Society for Neuroscience, Chicago, IL.

Summary: Alcohol use disorder is a chronic, relapsing brain disorder associated with serious medical consequences leading to preterm death. Although few in number, cholinergic interneurons (CIN) have arisen as an important cell population within the nucleus accumbens (nAc) that may exert a regulatory impact on dopamine (DA) neurotransmission locally. A defect in CIN have been suggested to be involved in psychiatric diseases such as alcohol addiction. The mechanisms through which endogenous cholinergic activity modulates DA release in response to ethanol administration and its role in development of addiction is not known. In this project, the aim was to study if acetylcholine (ACh) can influence DA release locally in the nAc and if so, through which receptor population(s) this effect is mediated. Further, we wanted to determine the role of ACh in ethanol-induced DA elevation.Using reversed in vivo microdialysis, the acetylcholinesterase inhibitor physostigmine was administered locally in the nAc of male Wistar rats followed by addition of either the muscarinic ACh receptor inhibitor scopolamine or the nicotinergic ACh receptor inhibitor mecamylamine. Subsequently, ethanol was perfused following local pretreatment with scopolamine or mecamylamine, using the same methodology. An immunotoxin, anti-ChAT-saporine, was infused locally into the nAc of a subset of male Wistar rats to selectively lesion CIN, followed by local ethanol administration via reversed in vivo microdialysis. Local administration of physostigmine induced a DA elevation within the nAc, an effect blocked by scopolamine but not by mecamylamine. Local administration of ethanol increased DA levels. Scopolamine pretreatment non-significantly attenuated the ethanol-induced DA elevation, whereas pretreatment with mecamylamine had no effect. Preliminary results indicate a minor attenuation of the DA elevation observed after local administration of ethanol in toxin-treated animals, as compared to sham-treated controls. Taken together, these results suggest that ACh increases extracellular DA levels in nAc in vivo, an effect mediated by muscarinic ACh-receptors and not by nicotinic ACh-receptors. Considering that scopolamine moderately attenuated ethanol-induced DA output and that lesioning of CIN appeared to hamper DA release in response to ethanol, ACh release from CIN within the nAc may be partially involved in ethanol-induced DA release in nAc.

Related Products: Anti-ChAT-SAP (Cat. #IT-42)

Exercise is neuroprotective following partial motoneuron depletion via androgen action at the target muscle

Chew C, Sengelaub DR (2019) Exercise is neuroprotective following partial motoneuron depletion via androgen action at the target muscle. Neuroscience 2019 Abstracts 134.13. Society for Neuroscience, Chicago, IL.

Summary: We have previously demonstrated that partial depletion of motoneurons innervating the quadriceps muscles induces dendritic atrophy in remaining motoneurons. Furthermore, systemic treatment with supplemental androgens is neuroprotective, and dendritic atrophy following partial motoneuron depletion is attenuated. Blockade of the androgen receptor at the target muscle prevents the neuroprotective effects on motoneuron dendrites in rats treated with supplemental androgens. We have recently shown that exercise is also neuroprotective on motoneuron dendrites following partial motoneuron depletion, and circulating levels of androgens have previously been shown to increase following exercise. Together, these results suggest that exercise may be neuroprotective via androgen action at the muscle. In the present study, we examine whether blockade of androgen receptors at the target musculature would prevent the neuroprotective effects of exercise on dendrites following partial motoneuron depletion. Motoneurons innervating the vastus medialis muscle in adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were given implants of the androgen receptor antagonist hydroxyflutamide, either directly at the quadriceps musculature or interscapularly as a systemic control. Following saporin injections, some animals were allowed free access to running wheels attached to their home cages. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with untreated males, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Early data suggests that following partial motoneuron depletion, exercised males with androgen receptor blockade at the quadriceps show dendritic lengths that are significantly shorter than those of exercised males with no treatment, while dendritic lengths in exercised males with interscapular implants do not differ from those of exercised animals without implants. These findings suggest that exercise may be protective against dendritic atrophy via androgens binding at the target musculature.

Related Products: CTB-SAP (Cat. #IT-14)

Shopping Cart
Scroll to Top