sfn2002

55 entries

Effects of cholinergic depletion on the expression of synaptic proteins and functional properties in the rat somatosensory cortex

Herron P, Ismail NS (2002) Effects of cholinergic depletion on the expression of synaptic proteins and functional properties in the rat somatosensory cortex. Neuroscience 2002 Abstracts 256.1. Society for Neuroscience, Orlando, FL.

Summary: Loss of acetylcholine (ACh) has been shown to contribute to numerous cognitive, perceptual, and behavioral deficits in animal studies and in Parkinson and Alzheimer’s patients. The purposes of these experiments were to determine the effects of cholinergic depletion on the expression of glutamic acid decarboxylase (GAD), N-methyl-D-aspartate (NMDA) receptors, synaptophysin, and CaMKII and on functional properties of single neurons in the somatosensory cortex. These experiments were done in the posteromedial barrel subfield (PMBSF) cortex of young adult Sprague-Dawley rats. Selective lesion of cholinergic neurons in the NBM was achieved with intraventricular injections of the immunotoxin (IT), 192 IgG saporin. Electrophysiological recordings and Western blot analyses for the expressions of GAD, NMDA receptors, and synaptophysin were done after a two-week post-injection survival period. The magnitude of evoked and spontaneous activities and the receptive field size of single neurons in the somatosensory cortex were investigated. Recordings and Western blot analyses were obtained from the same area of the PMBSF cortex. Results show that cholinergic depletion causes a significant decrease (11.7%) in the magnitude of evoked activity and an increase (10.7%) in the size of receptive fields. GAD, NMDA receptors, and synaptophysin levels in the in the PMBSF cortex were reduced 25%, 12%, 29%, and 12.5% respectively, in cholinergic depleted animals. Thus, cholinergic depletion leads to effects that significantly alter the expression of synaptic proteins involved in plasticity, learning, and memory.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Enhanced morphine analgeisa after spinal dermorphin-saporin

Miller SA, Lappi DA, Wiley RG (2002) Enhanced morphine analgeisa after spinal dermorphin-saporin. Neuroscience 2002 Abstracts 218.1. Society for Neuroscience, Orlando, FL.

Summary: Dermorphin-saporin (derm-sap) is a neuropeptide toxin conjugate which is selective for neurons expressing the mu-opiate receptor (MOR). The dermorphin moiety of the conjugate binds MOR which is then internalized by the neuron, carrying the toxin with it. The saproin moiety inactivates ribosomes resulting in cell death. In the present study we sought to determine the effect of destroying MOR expressing neurons in Lamina II of the spinal cord dorsal horn on baseline thermal pain sensitivity and response to systemic morphine analgesia. 456 ng derm-sap (n=8) and vehicle (n=8) were injected into the lumbar CSF of adult male Sprague Dawley rats using a subarachnoid catheter inserted through the atlanto-occipital membrane and passed cadually to the level of the lumbar enlargement. 10 minutes following toxin injection, the catheters were withdrawn and the animals allowed to recover. When tested on a hotplate at 52C and on tail-flick assay, toxin rats did not differ from rats injected with vehicle. However, the dose-response curves for subcutaneous morphine were significantly shifted to the left (increased potency) in the toxin treated rats when compared with vehicle controls. Histological analysis of multiple dorsal root ganglia failed to reveal evidence of any primary afferent cell loss. We interpreted these findings to indicate that the neurons destroyed by derm-sap are lamina II MOR expressing neurons and play a role in morphine analgesia at high stimulus intensities.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)

192-IgG-saporin lesions of the cholinergic basal forebrain do not impair attentional set-shifting, but do increase latency to dig

Tait DS, McGaughy JA, Latimer MP, Brown VJ (2002) 192-IgG-saporin lesions of the cholinergic basal forebrain do not impair attentional set-shifting, but do increase latency to dig. Neuroscience 2002 Abstracts 286.2. Society for Neuroscience, Orlando, FL.

Summary: The cholinergic neurons of the basal forebrain which project to cortex, the thalamic reticular nucleus and the amygdala, have been implicated in vigilance and attention (Sarter and Bruno, 2000). This study examined the effects of basal forebrain cholinergic depletion on a shifting of attentional set. Male Lister hooded rats were stereotaxically injected with 192-IgG-saporin into basal forebrain to effect cholinergic depletion. Doses of 0.20mg or 0.25mg resulted in a loss of cholinergic cells in the basal forebrain and depletion of cholinergic input to frontal cortex and the thalamic reticular nucleus. The test of attentional set shifting task for the rat (Birrell and Brown, 2000) measures acquisition, reversal learning and shifting of attention between stimulus dimensions. Trials to criterion and latency to dig were recorded. There was no evidence of impairment in acquisition, reversal learning or set-shifting performance in the rats with cholinergic depletion compared to controls. There was a significant effect on dig latency. This was apparent only when the lesioned rats first approached an incorrect (i.e. unbaited bowl): although no more likely to dig in the incorrect bowl, the lesioned rats took longer to then move to the correct bowl. No effects were seen on dig latency if the rat by chance approached the correct bowl first. We conclude that attentional set-shifting is spared following basal forebrain lesions. Changes in latency in the task might be account for by deficits in sustained attention (attention to task) or related to frustration.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Cholinergic neurons in the rabbit forebrain: Chemoarchitecture, in vivo labeling, immunolesions

Varga C, Grosche J, Brauer K, Seeger J, Harkany T, Hartig W (2002) Cholinergic neurons in the rabbit forebrain: Chemoarchitecture, in vivo labeling, immunolesions. Neuroscience 2002 Abstracts 35.3. Society for Neuroscience, Orlando, FL.

Summary: While the rabbit basal forebrain and its cholinergic components became useful targets for modeling of neuropathological changes associated with Alzheimer’s disease, their neuroanatomical organization is still largely elusive. Hence, we focused on (i) the number of cholinergic basal forebrain neurons (CBFN)in the major nuclei based on choline acetyltransferase (ChAT) immunoperoxidase labeling, (ii) the density of ChAT-immunoreactive fibers in distinct neocortical and hippocampal areas, (iii) mapping of projecting CBFN by low-affinity neurotrophin receptor p75 (p75NTR ) staining and (iv) the double fluorescence labeling of ChAT and the neuronal markers p75NTR, nitric oxide synthase (NOS), calbindin, calretinin, parvalbumin, tyrosine hydroxylase and substance P. While cholinergic interneurons were found in the hippocampus, they were not detectable in the neocortex. CBFN were shown to abundantly co-express p75NTR, except in the substantia innominata and ventral pallidum. Whereas cholinergic neurons were devoid of most investigated markers, a subset also contained calbindin or NOS. The selective in vivo labeling of CBFN was achieved with intracerebroventricularly (i.c.v.) injected carbocyanine 3-conjugated ME20.4IgG that recognizes an extracellular epitope of p75NTR. Parallel experiments revealed that the i.c.v. injection of ME20.4IgG-saporin conjugates led to the specific immunolesion of cholinergic cells in about one week, whereas long-term effects of the immunotoxin remain to be further elucidated.

Related Products: ME20.4-SAP (Cat. #IT-15)

Effects of cholinergic deafferentation of rhinal cortex on visual recognition in monkeys

Turchi JN, Saunders RC, Mishkin M (2002) Effects of cholinergic deafferentation of rhinal cortex on visual recognition in monkeys. Neuroscience 2002 Abstracts 82.5. Society for Neuroscience, Orlando, FL.

Summary: Excitotoxic lesions of the rhinal (perirhinal/entorhinal) cortices yield substantial deficits in visual recognition (Baxter and Murray, 2001; Malkova et al., 2001). To evaluate the mnemonic role of cholinergic inputs to this region, we compared the visual recognition performance of untreated monkeys with that of monkeys given rhinal cortex infusions of the selective cholinergic immunotoxin ME20.4-SAP. This toxin binds to the p75 receptor, borne by corticopetal cholinergic neurons of the basal forebrain, and is retrogradely transported to the cell body where it permanently destroys ribosomal function. Both groups were first trained to criterion in the rule for delayed nonmatching-to-sample (DNMS) with trial-unique stimuli at a 10-s delay in a Wisconsin General Testing Apparatus. This was followed by treatment and recovery for the experimental group (n=3) and an equivalent rest period for the control group (n=4), after which both groups were retrained on the DNMS rule and then given a memory performance test with increasing delays (30, 60, and 120 s) and list lengths (3, 5, 10, and 20 stimuli). The experimental group relearned the DNMS rule without significant impairment but then demonstrated robust deficits when tested with increasing delays (a mean of 83% vs 95% for controls) and list lengths (67% vs 86% for controls). The findings complement results obtained in a study of muscarinic receptor blockade in the perirhinal cortex (Tang et al., 1997) and indicate that cholinergic integrity of the rhinal cortex is critical for visual recognition memory.

Related Products: ME20.4-SAP (Cat. #IT-15)

Alterations in forebrain acetylcholine influence hippocampal neurogenesis in the adult rodent

Mohapel P, Leanza G, Lindvall O (2002) Alterations in forebrain acetylcholine influence hippocampal neurogenesis in the adult rodent. Neuroscience 2002 Abstracts 23.9. Society for Neuroscience, Orlando, FL.

Summary: Little is known about how various experiential, environmental and pathological factors regulate neurogenesis in the adult hippocampus. Since the hippocampus receives abundant cholinergic innervation and contains some of the densest distributions of acetylcholine (ACh) fibers, we investigated its potential role in adult neurogenesis. Adult rats received multiple bromodeoxyuridine (BrdU) injections 3 weeks following lesions of the adult rodent forebrain cholinergic projections by intracerebroventricular infusions of 192 IgG-saporin. The day following BrdU administration we observed a significant 20% to 30 % decrease in proliferation in the subgranular cell layer of the dentate gyrus with ACh lesioning. This decrease persisted through to 4 weeks after BrdU administration, when most proliferated cells co-expressed neuronal markers. Conversely, in a separate experiment, naive rats receiving simultaneous injections of the ACh agonist physostigmine and BrdU demonstrated a 30 % increase in proliferated cells (1 day later) and neurons (4 weeks later) in the subgranular cell layer. Our data indicate that cholinergic mechanisms in the forebrain are involved in the regulation of neurogenesis and that this effect may be indirect or direct in the hippocampus.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Steroid sulfatse inhibition potentiates working memory deficit induced by 192 IgG-saporin

Zambon NJ, Liberatore MA, Nagle RA, Pokala VN, Li P, Johnson DA (2002) Steroid sulfatse inhibition potentiates working memory deficit induced by 192 IgG-saporin. Neuroscience 2002 Abstracts 82.6. Society for Neuroscience, Orlando, FL.

Summary: Infusion of 192 IgG-saporin (SAP) into the medial septum (MS) of rats selectively lesions cholinergic neurons and impairs acquisition of a delayed matching to position T-maze task. Since steroid sulfatase inhibitors allosterically inhibit the GABA-A receptor and enhance cognition, the present study investigated the cognitive effects of sulfatase inhibition on SAP lesioned animals. Male Sprague-Dawley rats received intraseptal infusions of either cerebrospinal fluid (CSF) or 0.22 μg/μl SAP. Eight days after the infusion, the rats were given an IP injection of either the steroid sulfatase inhibitor DU-14 (30mg/ml) or vehicle daily for 14 days, then every other day during the testing period. In the acquisition phase of testing, each rat completed 8 trial pairs per day until reaching criterion (15 of 16 correct choices). The rats were then tested for retention of the task by inserting delays of 10, 20, and 30 seconds after the first trial of a pair. DU-14 potentiated the impairment in acquisition produced by SAP. The introduction of a delay resulted in deceased performance in all treatment groups except rats administered DU-14 without SAP lesioning. These results suggest that DU-14 may enhance cognition in cholinergically intact animals, but the combination of DU-14, with cholinergic lesioning of MS, impairs working memory by inhibition of both cholinergic and GABAergic neurotransmission.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Effect of 192 IgG-saporin medial-septum lesion on hippocampal receptor density in rats

Pokala VN, Libertore MA, Zambon NJ, Nagle RA, Li PK, Witt-Enderby PA, Johnson DA (2002) Effect of 192 IgG-saporin medial-septum lesion on hippocampal receptor density in rats. Neuroscience 2002 Abstracts 82.7. Society for Neuroscience, Orlando, FL.

Summary: The aim of the study was to quantify the effect of selective cholinergic neurotoxin192 IgG-saporin (SAP) medial septal (MS), lesions on hippocampal muscarinic, GABAA and NMDA receptor density. Rats were injected with SAP (0.22 and 0.45 μg/μl) into the MS. After 6 weeks, hippocampal tissue was collected and saturation radioligand binding assays were performed to determine the receptor density. 3H-QNB was a muscarinic antagonist, 3H-muscimol a GABAergic agonist and 3H-MK-801 an NMDA antagonist were utilized. The results demonstrated a dose dependent increase in muscarinic receptor density (B-max) of 226 and 355% respectively. These results suggest changes in receptor density in response to hippocampal cholinergic denervation.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Residual hippocampal cholinergic functions after 192 IgG-saporin lesions of the medial septum/ventral diagonal band (MS/VDB)

Chang Q, Gold PE (2002) Residual hippocampal cholinergic functions after 192 IgG-saporin lesions of the medial septum/ventral diagonal band (MS/VDB). Neuroscience 2002 Abstracts 82.8. Society for Neuroscience, Orlando, FL.

Summary: 192 IgG-saporin (SAP) injections into the MS/VDB reportedly destroy acetylcholine (ACh) neurons projecting to hippocampus (HC) without associated impairments of learning and memory on HC-dependent tasks. These findings contrast sharply with those obtained with many other methods showing close associations between ACh functions in the HC and learning and memory. The present experiment addressed this conflict. SAP was injected into MS/VDB 1 week before the start of neural and behavioral measures. We found: 1) Using in vivo microdialysis, release of ACh in the HC was not abolished but was ~30% of control values. The percent increase in ACh release during spontaneous alternation testing was greater in SAP-treated than in control rats. 2) SAP-treated rats had significant impairments on the HC-dependent alternation task. Moreover, intra-HC injections of physostigmine (20 ng in 1 µl), an indirect ACh agonist, enhanced alternation scores. 3) Physostigmine (0.6 mg/kg, IP) induced more intense tremors in SAP-treated than in control rats. 4) While SAP-treated rats had near-total depletion of cells in MS/VDB stained using immunocytochemistry for choline acetyltransferase (ChAT), quantitative densitometry showed no depletion of ChAT staining in either CA1 or the dentate gyrus in the SAP group. These findings suggest that there are residual and even heightened ACh functions which can compensate for the insult of MS/VDB SAP lesions, complicating the use of this lesion to evaluate the role of septohippocampal cholinergic projections in learning, memory or other functions.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Physiological and pharmacological characteristics of the inhibitory muscarinic response in septohippocampal cholinergic neurons.

Wu M, Xu C, Alreja M (2002) Physiological and pharmacological characteristics of the inhibitory muscarinic response in septohippocampal cholinergic neurons. Neuroscience 2002 Abstracts 35.7. Society for Neuroscience, Orlando, FL.

Summary: Septohippocampal cholinergic neurons in the MSDB provide the hippocampus with almost its entire ACh and also release ACh locally within the MSDB. The released ACh sustains activity in the GABAergic limb of the septohippocampal pathway. Septohippocampal cholinergic neurons undergo atrophy in neurodegenerative disorders associated with loss of cognition. In a recent study we demonstrated that 65% of septohippocampal cholinergic neurons are inhibited by ACh via muscarinic receptors. Because of the importance of ACh and septohippocampal cholinergic neurons in cognition, we studied the physiological and pharmacological properties of the muscarinic response in MSDB neurons. Using intracellular and whole-cell recordings, we tested the effects of muscarine on retrogradely-labeled septohippocampal cholinergic neurons in vitro in rat brain slices. The cells were labeled using the Cy3-192IgG, a selective marker of septohippocampal cholinergic neurons. Prolonged (10-15 mins) but not short (1-2 min) applications of muscarine or oxotremorine produced a marked desensitization (>50%). The muscarine-induced outward current was found to be mediated via direct as well as indirect mechanisms. It reversed at Ek and was blocked by external barium. The M2/M4 antagonist, methoctramine blocked the muscarine response in only 10% of the neurons tested and tropicamide, an M4-prefering antagonist, blocked the muscarine response in 5/5 neurons tested, suggesting possible involvement of M4 receptors.

Related Products: 192-IgG Mouse Monoclonal, Cy3-labeled (Cat. #AB-N43FL3)

Shopping Cart
Scroll to Top