- Home
- Knowledge Base
- 2021 Targeting Trends Review
2021 Targeting Trends Review
Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression
Lin HJ, Mahendran R, Huang HY, Chiu PL, Chang YM, Day CH, Chen RJ, Padma VV, Liang-Yo Y, Kuo WW, Huang CY (2021) Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. J Ethnopharmacol 8:114728. doi: 10.1016/j.jep.2021.114728 PMID: 34634367
Objective: To investigate the ability of Solanum nigrum to attenuate Angiotensin II – induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation.
Summary: The data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.
Usage: Western Blot
Related Products: Angiotensin II receptor (AT-2R) Rabbit Polyclonal, affinity-purified (Cat. #AB-N28AP)
Nonsteroidal anti-inflammatory drug (ketoprofen) delivery differentially impacts phrenic long-term facilitation in rats with motor neuron death induced by intrapleural CTB-SAP injections
Borkowski LF, Keilholz AN, Smith CL, Canda KA, Nichols NL (2021) Nonsteroidal anti-inflammatory drug (ketoprofen) delivery differentially impacts phrenic long-term facilitation in rats with motor neuron death induced by intrapleural CTB-SAP injections. Exp Neurol 347:113892. doi: 10.1016/j.expneurol.2021.113892
Objective: To determine the effect of ketoprofen delivery on enhanced phrenic long-term facilitation (pLTF)
Summary: pLTF was surprisingly attenuated in 7d CTB-SAP rats and enhanced in 28d CTB-SAP rats (both p < 0.05) following ketoprofen delivery.
Usage: Rats received bilateral intrapleural injections of CTB-SAP; 25 μg dissolved in PBS.
Related Products: CTB-SAP (Cat. #IT-14)
The role of BDNF-mediated neuroplasticity in cardiovascular regulation within the hypothalamus and brainstem
Thorsdottir DJ (2021) The role of BDNF-mediated neuroplasticity in cardiovascular regulation within the hypothalamus and brainstem. Univ Vermont, Dept Pharmacology 1387Thesis.
Summary: This PhD dissertation to determine the mechanism behind BDNF-mediated cardiovascular regulation.
Usage: Rats received bilateral NTS injections of vehicle or Anti-DBH-SAP, which selectively lesions catecholaminergic neurons. Treatment increased blood pressure in the GFP group but failed to affect blood pressure in the BDNF group.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
The molecular basis for IL-31 production and IL-31-mediated itch transmission: from biology to drug development
Kunimura K, Fukui Y (2021) The molecular basis for IL-31 production and IL-31-mediated itch transmission: from biology to drug development. Int Immunol 33(12):731-736. doi: 10.1093/intimm/dxab065
Objective: To investigate the molecular mechanisms of how IL-31 is produced in helper T cells upon stimulation and transmits the itch sensation to the brain.
Summary: This review highlights recent findings that show the functional significance of endothelial PAS domain 1 (EPAS1) and neurokinin B (NKB) in the IL-31-induced itch sensation.
Usage: Neurons expressing the Nppb receptor were specifically ablated by intrathecal injection of Nppb-SAP. Treatment with Bombesin-SAP reduced IL-31-induced scratching.
Related Products: Bombesin-SAP (Cat. #IT-40), Nppb-SAP (Cat. #IT-69)
Contribution of small diameter non-peptidergic primary afferent neurons to central neuropathic pain in a new, more clinically relevant mouse model of multiple sclerosis
Nguyen KL, Lamerand SR, Deshpande RP, Taylor BK (2021) Contribution of small diameter non-peptidergic primary afferent neurons to central neuropathic pain in a new, more clinically relevant mouse model of multiple sclerosis. Neuroscience 2021 Abstracts P377/07. Society for Neuroscience, Virtual.
Summary: Over 50% of multiple sclerosis (MS) patients suffer from neuropathic pain (MSNP). Current treatments give inadequate relief due to incomplete understanding of underlying mechanisms. Recent electrophysiological recordings of primary afferent neurons (PAN) in the dorsal root ganglion (DRG) following experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, revealed increased afterhyperpolarization in small-diameter fibers. These data form the premise of our goal to understand the contribution of small-diameter (peptidergic or non-peptidergic) PANs to MSNP. Arguably the most common method to induce EAE is administration of myelin oligodendrocyte glycoprotein (MOG) to generate an autoimmune response targeting the myelin sheath. A MOG fragment is typically given with two adjuvants: complete Freund’s adjuvant (CFA) to boost immunogenicity and pertussis toxin (PTX) to breakdown the blood-brain barrier and facilitate CNS immune cell infiltration. However, PTX can disrupt G-protein coupled receptors, cause pain, and alter autoimmune response gene expression. In 10-week-old C57BL/6 mice, we conducted the first rigorous comparison of a classic PTX EAE model with the novel non-PTX (nPTX) EAE model. We found that both PTX and nPTX EAE mouse models showed the same degree of: 1) motor deficits; 2) plantar hindpaw mechanical and cold hypersensitivity (except cold hypersensitivity resolved more quickly after PTX EAE than nPTX EAE); and 3) lumbar spinal cord demyelination. Unlike most rodent models of MS including PTX EAE, the nPTX EAE group exhibited somatosensory cortex demyelination, a core feature of MS in human patients and cold hypersensitivity. We suggest nPTX EAE to be the most clinically relevant rodent model available to study not only MSNP, but MS in general. To evaluate the contribution of peptidergic and non-peptidergic neurons to MSNP, we induced nPTX EAE. After 12 days we administered capsaicin (10µg/mouse, i.t.) or IB4-saporin (1.5µg/mouse, i.t.) to primarily ablate peptidergic or nonpeptidergic C-fibers, respectively. Ablation efficacy was successfully confirmed with dramatic loss in DRG of TRPV1/CGRP immunoreactivity (peptidergic C-fibers) following capsaicin, and IB4 immunoreactivity (nonpeptidergic C-fibers) following IB4-saporin. IB4-saporin, but not capsaicin, partially reduced mechanical hypersensitivity and reversed cold hypersensitivity within 9 days. These data suggest nonpeptidergic but not peptidergic C-fibers contribute to MSNP. Our next studies will use genetic knockout, chemogenetic, and optogenetic strategies using MrgprdCreER mice to modulate the activity of nonpeptidergic C-fibers.
Related Products: IB4-SAP (Cat. #IT-10)
The role of the patch compartment of striatum in reward-driven behaviors
Ahn J, Christy DJ, Horner K (2021) The role of the patch compartment of striatum in reward-driven behaviors. Neuroscience 2021 Abstracts P747/06. Society for Neuroscience, Virtual.
Summary: The striatum is a neural structure that plays a critical role in cognitive functions, behavioral decision-making, and reward generation. The striatum exhibits a heterogeneous composition, containing neurons belonging to the patch compartment—which is thought to be involved in habitual reward-related behaviors—surrounded by neurons belonging to the matrix compartment—which is thought to be involved in adaptive motor control. Additionally, the striatum is further subdivided into the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS), each with their own patch and matrix compartments. The DMS has been associated with goal-oriented behavior seen during the initial stages of addiction. Conversely, the DLS has been associated with habitual behaviors seen during late-stage addictive behaviors that are inflexible. It is thought that drug addiction is initially mediated by the DMS before DLS activity becomes predominant. Previously, it has been shown that the patch compartment of the DLS is necessary for development of habitual behavior, but the role of the patch compartment of the DMS is less clear. Our study intends to demonstrate that selective ablation of DMS patch compartment neurons will result in a negative impact on the initial development of reward-driven behaviors during the early stages of drug addiction. Since patch compartment neurons express a high level of mu opioid receptors compared to the surrounding matrix, we used dermorphin-saporin, a toxin that selectively destroys mu opioid receptor-containing neurons to target patch compartment neurons in the DMS and DLS for ablation. Following infusion in the DMS or DLS with dermorphin-saporin (17 ng/μl) or vehicle, rats were trained to self-administer cocaine (0.4 mg/kg/infusion) on progressive ratio schedule of reinforcement, starting with fixed ratio of 1 and ending with a fixed ratio of 5. Ablation of the patch compartment altered the level of responding for cocaine as the schedule of reinforcement became progressively labor-intensive. These data suggest that the patch compartment contributes to reward-driven behaviors.
Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)
Effects of age on sexually dimorphic food protection behavior associated with hippocampal cholinergic deafferentation.
Osterlund Oltmanns JR, Schaeffer EA, Blackwell AA, Pietrucha SA, Yang H, Tasi S, Kartje GL, Wallace D (2021) Effects of age on sexually dimorphic food protection behavior associated with hippocampal cholinergic deafferentation. Neuroscience 2021 Abstracts P210.07. Society for Neuroscience, Virtual.
Summary: Loss of hippocampal cholinergic projection originating from basal forebrain structures has been associated with the progression of Dementia of the Alzheimer’s Type. The role of these fibers in information processing deficits has been debated; however, spontaneous behaviors such as food protection have been observed to dissociate the contributions of hippocampal and cortical cholinergic function. Sexual dimorphism and age are critical factors in the progression of neurodegenerative disorders, yet these factors have not been evaluated in food protection behavior. The current study infused the immunotoxin 192-IgG-Saporin bilaterally into the medial septum to produce selective cholinergic deafferentation of the hippocampal formation. Female and male rats received infusion of the immunotoxin at either three or 18 months of age. Testing in the in the food protection paradigm began six weeks after the surgery. During the five days of testing, rats received two food protection sessions. Each of these sessions involved the rat (dodger) being placed in a transparent cylinder with a same sex conspecific (robber). The dodger was given a one-gram food item to consume, while the robber made multiple attempts to obtain the food item. The number, success rate, and type of food protection behaviors were recorded across all food protection sessions. Rats also received a third session each day in which the latency to consume the food item was recorded in the absence of the conspecific. Preliminary results indicate that sex and age interact with cholinergic hippocampal deafferentation to influence the organization of food protection behaviors. These observations establish a foundation for future work investigating novel therapeutic interventions that target neuroplasticity within spared cholinergic systems.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Nociception impedes grasping recovery in the spinal cord injured rat.
Walker J, Kim T, Giszter S, Detloff MR (2021) Nociception impedes grasping recovery in the spinal cord injured rat. Neuroscience 2021 Abstracts P372.04. Society for Neuroscience, Virtual.
Related Products: IB4-SAP (Cat. #IT-10)
A brief history of saporin and its contributions to neuroscience
Shramm PA, Ancheta LR, Bouajram R, Lappi DA (2021) A brief history of saporin and its contributions to neuroscience. Neuroscience 2021 Abstracts J002.11. Society for Neuroscience, Virtual.
Summary: When investigating the origins of targeted toxins (a drug, therapy, or scientific tool directed to a unique extracellular target), an appropriate place to begin is with the Nobel Prize-winning work of Paul Ehrlich and his concept of the “magic bullet.” Over 100 years later, the use of targeted toxins to perform molecular neurosurgery has become a vital practice that allows researchers to observe changes in organisms after eliminating a neuronal population. A prime example of this practice is the specific targeting of cholinergic neurons in the basal forebrain to mimic Alzheimer’s disease (AD). The research tool designed for this purpose is 192-IgG-Saporin, an antibody conjugated to the ribosome-inactivating protein (RIP) Saporin. Researchers have used this targeted toxin for over 30 years. A 2019 publication by Verkhratsky et al. reviews AD models and states this is the only lesion model that specifically targets cholinergic neurons. In 1983, during a quest to find the optimal payload for a targeted toxin, Fiorenzo Stirpe and colleagues discovered Saporin, a plant protein isolated from the common soapwort plant Saponaria officinalis. Unlike ricin and abrin, Saporin does not have a binding chain and cannot enter a cell on its own. Scientists have devised new ways to use Saporin to advance their research and drug development activities. Just a few examples include: 1. A novel suicide gene therapy approach that uses a vector encoding a double-stranded DNA aptamer to deliver the gene encoding Saporin, 2. Delivery of Saporin encapsulated in a nanotechnology system for development of cancer treatments, 3. A deeper understanding of the difference between pain and itch and the relevant pathways, and 4. Development of a stable epilepsy animal model that is used for screening specific treatments that will lead to micro-methods to eliminate the disease. This review will focus on Saporin as the payload delivered to cells. Targeted toxins (typically targeted by an antibody or peptide chemically linked or genetically fused) provide robust tools for neuroscience where ablation of specific neuronal populations is used to study behavior and function. Saporin is an ideal molecule because of its extreme resistance to high temperatures and denaturation, retention of catalytic activity after conjugation, and lack of a binding chain to allow entrance to the cytoplasm of cells on its own. As a result, it is one of the most studied RIPs used for its vigorousness, potency, safety, and ease of use in the laboratory. The information presented will shed light on the history of Saporin, current applications, and what the future holds for this protein in the neuroscience field.
Related Products: Saporin (Cat. #PR-01)
A neuropeptide code for itch
Chen ZF (2021) A neuropeptide code for itch. Nat Rev Neurosci 22(12):758-776. doi: 10.1038/s41583-021-00526-9
Related Products: Bombesin-SAP (Cat. #IT-40)