- Home
- Knowledge Base
- 2014 Targeting Trends Review
2014 Targeting Trends Review
Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission.
Zhao Z, Wan L, Liu X, Huo F, Li H, Barry D, Krieger S, Kim S, Liu Z, Xu J, Rogers B, Li Y, Chen Z (2014) Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission. J Neurosci 34:12402-12414. doi: 10.1523/JNEUROSCI.1709-14.2014
Summary: After itch detection, the itch pathway moves through an array of G-protein coupled receptors and transient receptor potential channels in dorsal root ganglion neurons into dorsal horn neurons which integrate and transduce these signals, sending them to the somatosensory cortex. The purpose of this work is to clarify whether gastrin-releasing peptide (GRP) or B-type natriuretic peptide regulates histaminergic itch. Several strains of knockout mice received 200, 300, or 400 ng intrathecal injections of bombesin-SAP (Cat. #IT-40). Blank-SAP (Cat. #IT-21) was used as a control. The data further define the respective functions of the neuromedin B receptor and GRP receptor in itch, and reveals a working relationship between the different interneuron populations.
Related Products: Bombesin-SAP (Cat. #IT-40), Blank-SAP (Cat. #IT-21)
Orexin A activates hypoglossal motoneurons and enhances genioglossus muscle activity in rats.
Zhang G, Liu Z, Zhang B, Geng W, Song N, Zhou W, Cao Y, Li S, Huang Z, Shen L (2014) Orexin A activates hypoglossal motoneurons and enhances genioglossus muscle activity in rats. Br J Pharmacol 171:4233-4246. doi: 10.1111/bph.12784
Summary: Orexin neurons are restricted to the lateral hypothalamus (LH) and are involved in functions such as feeding behavior, energy homeostasis, sleep/wake cycles, and many others. Here the authors investigate orexin control of the genioglossus – the largest upper airway dilator muscle. Rats received bilateral 172 ng injections of orexin-SAP into the LH. Lesioned animals displayed a significant decrease in genioglossus muscle electromyograms, indicating that orexin neurons are vital to the control of this muscle.
Related Products: Orexin-B-SAP (Cat. #IT-20)
Effects of noradrenergic denervation by anti-DBH-saporin on behavioral responsivity to L-DOPA in the hemi-parkinsonian rat.
Ostock C, Lindenbach D, Goldenberg A, Kampton E, Bishop C (2014) Effects of noradrenergic denervation by anti-DBH-saporin on behavioral responsivity to L-DOPA in the hemi-parkinsonian rat. Behav Brain Res 270:75-85. doi: 10.1016/j.bbr.2014.05.009
Summary: Dopamine loss is central to Parkinson’s disease and is often accompanied by noradrenergic denervation of the locus coeruleus. In this work the authors examined the role this loss plays in L-DOPA therapy using a rat Parkinson’s disease model. The rats received 10 μg of anti-DBH-SAP (Cat. #IT-03) into the left lateral ventricle. Loss of norepinephrine (NE) neurons did not affect behavior, but lesioned animals were less responsive to the pro-motor therapeutic effects of L-DOPA.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.
Criscimanna A, Coudriet G, Gittes G, Piganelli J, Esni F (2014) Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice. Gastroenterology 147:1106-1118.e1111. doi: 10.1053/j.gastro.2014.08.008
Summary: In response to tissue damage or infection, monocytes are recruited to the injured area and differentiate into macrophages. These macrophages can perform different functions depending on the tissue type. The specific differentiation macrophages undergo in response to their environment is called polarization. The authors used a mouse pancreatic lesion model to examine the polarization of macrophages into the two distinct states known, M1 and M2. Mice received 20 μg of Mac-1-SAP mouse (Cat. #IT-06) in a tail vein injection following a pancreatic lesion, and were sacrificed on various days post-injection in order to evaluate macrophage presence at different response stages. The results demonstrate that various aspects of macrophage polarization are required for pancreatic regeneration.
Related Products: Mac-1-SAP mouse/human (Cat. #IT-06)
Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission.
Liu H, Yan W, Lu X, Zhang X, Wei J, Wang X, Wang T, Wu T, Cao J, Shao C, Zhou F, Zhang H, Zhang P, Zang T, Lu X, Cao J, Ding H, Zhang L (2014) Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission. Exp Neurol 261:475-485. doi: 10.1016/j.expneurol.2014.07.018
Summary: The first synapse in the pain pathway is in the spinal dorsal horn, and several sites are involved in the descending control of pain. Previous studies have suggested that cerebrospinal fluid-contacting neurons may facilitate signal transmission and substance transport between the brain parenchyma and the CSF, including processes that modulate pain transmission. The authors administered CTB-SAP (Cat. #IT-14) into the right lateral ventricle of rats. Saporin (Cat. #PR-01) was used as a control. The results indicate that the 5-HT pathway contacting the CSF is an important piece in the descending inhibitory system controlling spinal transmission of pain.
Related Products: CTB-SAP (Cat. #IT-14), Saporin (Cat. #PR-01)
Light-triggered, efficient cytosolic release of IM7-saporin targeting the putative cancer stem cell marker CD44 by photochemical internalization.
Bostad M, Kausberg M, Weyergang A, Olsen C, Berg K, Høgset A, Selbo P (2014) Light-triggered, efficient cytosolic release of IM7-saporin targeting the putative cancer stem cell marker CD44 by photochemical internalization. Mol Pharm 11:2764-2776. doi: 10.1021/mp500129t
Summary: CD44 is known as a common cancer stem cell (CSC) marker. Given that CSC’s seem to have the ability to resist many therapeutic agents, the authors investigated the use of photochemical internalization (PCI) while targeting CD44-expressing CSC’s. An immunotoxin was constructed by biotinylating a pan CD44 antibody and combining it with Streptavidin-ZAP (Cat. #IT-27) at a 4:1 biotinylated antibody to Streptavidin-ZAP molar ratio. Various cancer cell lines were incubated with the toxin at a concentration of 0.825 nM. The toxin showed specific cytotoxicity to CD44-expressing cell lines, demonstrating the efficacy of PCI in conjunction with targeted toxins to treat some cancers
Related Products: Streptavidin-ZAP (Cat. #IT-27), Anti-CD44-SAP (Cat. #IT-72)
P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro.
Alvares T, Revill A, Huxtable A, Lorenz C, Funk G (2014) P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro. J Physiol 592:3089-3111. doi: 10.1113/jphysiol.2013.268136 PMID: 24879869
Summary: P2YR’s are metabotropic purinergic receptors found in some parts of the CNS. A subtype of this receptor excites rhythm generating networks in the preBötzinger complex. In order to better understand the role of these receptors in modulation of motor output the authors used brainstem-spinal cord and medullary slice preparations from neonatal rats to investigate P2Y1R signaling on specific neurons that innervate diaphragm and airway muscles. Anti-NK1r (Cat. #AB-N33AP) at a 1:1000 dilution was used during the immunohistochemistry. The data suggest that loss of purinergic modulation contributes to motoneuron excitability.
Related Products: NK-1 Receptor Rabbit Polyclonal, affinity-purified (Cat. #AB-N33AP)
Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase.
Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, Geisen C, Chakraborty A, Moslehi J, Smalley D, Wei X, Chen X, Chen Z, Beres J, Zhang J, Tsao J, Brenner M, Zhang Y, Fan C, DePinho R, Paik J, Gygi S, Kaelin W, Zhang Q (2014) Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev 28:1429-1444. doi: 10.1101/gad.242131.114 PMID: 24990963
Summary: Members of the FOXO family are thought to act as tumor suppressor genes. In this work the authors investigated the hydroxylation of FOXO3a by EglN2. This hydroxylation pushes FOXO3a toward a protosomal degradation pathway. Loss of FOXO3a in turn allows the accumulation of Cyclin D1, which has been found to be overexpressed in some breast cancers. Some of the data were generated using immunoblots with anti-transhydroxylated proline (Cat. #AB-T044).
Usage: Western blot
Related Products: Trans-4-Hydroxy-L-Proline Rabbit Polyclonal, Conjugated (Cat. #AB-T044)
Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn.
Carr F, Géranton S, Hunt S (2014) Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn. Mol Pain 10:39. doi: 10.1186/1744-8069-10-39
Summary: Peripheral joint pathology in conditions such as osteoarthritis does not always correlate to the amount of pain experienced, indicating that chronic pain is present. The role of descending facilitation in this form of chronic pain has not been investigated. The authors examined the role of mu opioid receptor-expressing cells in the rostral vental medulla (RVM) in behavioral hypersensitivity seen in joint pain models. Rats received 1.5 pmol of Dermorphin-SAP (Cat. #IT-12) into the RVM. Lesioned animals displayed prolonged attenuation of hypersensitivity, and altered expression of several genes was detected by qPCR, indicating that descending facilitation in the RVM is involved in joint pain behavior.
Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex.
Bajo V, Leach N, Cordery P, Nodal F, King A (2014) The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex. Eur J Neurosci 40:2922-2940. doi: 10.1111/ejn.12653 PMID: 24945075
Summary: The ferret has become a more common animal model in auditory neuroscience. Unlike rodent models, however, anatomical data describing the organization of the basal forebrain cholinergic system and its projections to the auditory cortex have not been well characterized. Using a variety of methods the authors mapped the architecture of the ferret basal forebrain. IHC was done with several antibodies including anti-ChAT (Cat. #AB-N34AP; 1:1000) and anti-NGFr (Cat. #AB-N07; 1:500). Animals also received 17 μg of ME20.4-SAP (Cat. #IT-15) in a total of 17 injections into the ectosylvian gyrus. The results indicate that acetylcholine is most likely involved in modulation of auditory processing.
Related Products: Choline Acetyltransferase Rabbit Polyclonal, affinity-purified (Cat. #AB-N34AP), NGFr (ME20.4, p75) Mouse Monoclonal (Cat. #AB-N07), ME20.4-SAP (Cat. #IT-15)