sfn2010

37 entries

Cholinergic modulation of both visual and olfactory attention with the five-choice serial reaction time test

Ljubojevic V, Luu P, De Rosa E (2010) Cholinergic modulation of both visual and olfactory attention with the five-choice serial reaction time test. Neuroscience 2010 Abstracts 535.8. Society for Neuroscience, San Diego, CA.

Summary: The nucleus basalis magnocellularis (NBM) sends acetylcholine (ACh) to neocortical regions that are involved in attentional cognitive processes. Using the five choice serial reaction time task (5CSRTT), the rodent analog of sustained attention in the human cognitive literature, it has been shown that a loss of cholinergic cells in the NBM causes impaired visual attentional performance in rats (Lehmann et al., 2003; McGaughy et al., 2002). The present research examined the neurochemical modulation of attentional processes using both a visual and an olfactory version of the 5CSRTT. To that purpose, we trained 14 male adult Long-Evans rats to attend and react to the briefly presented visual or odor stimuli until they achieved a stable performance under the baseline task conditions, i.e., low attentional demand with stimulus duration (SD) of 1s. Following the successful acquisition of both versions of the 5CSRTT, the rats were subjected to selective cholinergic lesions of the NBM with the cholinergic immunotoxin 192 IgG-saporin to remove the cholinergic innervation from the neocortical mantle. This allowed an examination of the role of ACh in modulation of visual and olfactory attention. After the two week post-surgical recovery period, we compared the attentional performance of the saporin-lesioned (SAP) group (N=8) to that of the sham-lesioned (SHAM) group (N=6) on the two versions of the 5CSRTT task. We observed the impaired attentional performance of the SAP rats on the visual 5CSRTT under the baseline conditions (SD=1s); shortening the SD = 0.5s increased the extent of their deficits. With the olfactory 5CSRTT, the SAP impairment was only observed under the attentional challenge of SD=0.5s. However, in both modalities the difference between two groups trended toward statistical significance due to the low number of the experimental subjects in each group. We are currently performing further parametric manipulations to further challenge the rats in both modalities. We will then collect data from an additional 14 rats to increase the statistical power of our experiment. After the completion of the behavioral data collection, we will conduct acetylcholinesterase histochemistry and choline acetyltransferase immunohistochemistry in order to determine the extent of the loss of cholinergic afferents in fronto-parietal target cortical areas and the loss of cholinergic cell bodies in the NBM, respectively. In addition, parvalbumin immunohistochemistry will be carried out to quantify GABA-releasing neurons colocalized in NBM to confirm the selectivity of our lesion.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Targeting inhibitory neurons in the superficial dorsal horn: Somatostatin-saporin

Chatterjee K, Lemons LL, Wiley RG (2010) Targeting inhibitory neurons in the superficial dorsal horn: Somatostatin-saporin. Neuroscience 2010 Abstracts 585.1/XX15. Society for Neuroscience, San Diego, CA.

Summary: Intrathecal injection of somatostatin (SST), or the long-acting congener, octreotide, have been reported analgesic in humans with intractable pain. The principal SST receptor, sst2a, is expressed by GABAergic neurons in the superficial dorsal horn of the spinal cord. In the present study, we sought to determine the nocifensive behavioral effects of selectively destroying sst2a-expressing dorsal horn neurons using intrathecal injection of the targeted toxin, SST-saporin. SST-sap (500-625 ng) was injected intrathecally into rats followed by thermal plate and thermal preference shuttle box testing for up to three weeks. One of three rats injected with 625 ng of SST-sap developed severe persistent scratching of its lower body. Compared to vehicle controls and rats injected with 500 ng of corticotrophin releasing factor (CRF)-saporin, the SST-sap rats showed initially prolonged latencies and decreased nocifensive reflex responses on the 44 C hotplate that persisted for up to 17 days before returning to control levels. SST-sap rats also showed decreased reflex responses on the 0.3 C cold plate. Lastly, SST-sap rats showed no change in thermal preference in a shuttle box with floor temperatures of 15 C vs 45 C. CRF-sap rats showed delayed onset (after 8 days) of decreased hotplate responding and increased hot side occupancy in the thermal preference shuttle box. These results suggest, at the doses used, that SST-sap produced incomplete depletion of target neurons followed by compensatory plasticity, whereas, CRF-sap produced no primary effect but induced secondary plasticity resulting in long term decrease in responses to aversive heat. Higher dose studies and anatomic analysis of lesions produced by these agents are planned.

Related Products: CRF-SAP (Cat. #IT-13)

Targeting inhibitory neurons in the superficial dorsal horn: Neurotensin-saporin (NTS-sap) and neurotensin-cholera toxin A subunit (NTS-CTA)

Wiley RG, Lemons LL, Chatterjee K (2010) Targeting inhibitory neurons in the superficial dorsal horn: Neurotensin-saporin (NTS-sap) and neurotensin-cholera toxin A subunit (NTS-CTA). Neuroscience 2010 Abstracts 585.2/XX16. Society for Neuroscience, San Diego, CA.

Summary: Neurotensin (NTS) and high affinity neurotensin receptors (NTSR-1) are found in the superficial dorsal horn, primarily lamina II. Intrathecal NTS has been reported to be anti-nociceptive, naloxone does not block the anti-nociceptive effects of intrathecal NTS and NTS acting at the NTSR-1 is excitatory. Based on these facts, we hypothesized that intrathecal neurotensin produces anti-nociception by exciting inhibitory interneurons in the superficial dorsal horn. In the present study, we sought to determine the effects, on modified thermal plate responses, of lumbar intrathecal injections of NTS-saporin, that is expected to selectively kill NTSR-1-expressing dorsal horn neurons, and NTS-Cholera toxin A subunit (NTS-CTA), that is expected to excite the same neurons. NTS-sap (200-625 ng) produced sustained, remarkable, vigorous scratching of hindquarters, often to the exclusion of any other activity. 12-15 ng of NTS-sap produced no scratching and increased lick/guard responding on the 44 C hotplate. Lumbar intrathecal injections of NTS-CTA (500 ng) produced profound decrease in lick/guard responding on the 44.5 C hotplate that lasted for 100-150 hours. This unique pattern of effects is consistent with the hypothesis that NTSR-1-expressing lamina II dorsal horn neurons are both inhibitory and anti-nociceptive. These results also are consistent with the intrathecal injections of NTS-CTA producing sustained excitation of these inhibitory interneurons resulting in inhibition of nociceptive projection neurons. This strategy of exciting NTSR-1-expressing inhibitory interneurons of the superficial dorsal horn is a novel approach to achieve non-opioid-mediated analgesia which may prove valuable in treating refractory chronic pain.

Related Products: Neurotensin-SAP (Cat. #IT-56), Neurotensin-CTA (Cat. #IT-60)

Neuropeptide receptor co-expression in superficial dorsal horn: Effects of galanin-saporin, neuropeptide y-saporin and dermorphin-saporin

Lemons LL, Chatterjee K, Wiley RG (2010) Neuropeptide receptor co-expression in superficial dorsal horn: Effects of galanin-saporin, neuropeptide y-saporin and dermorphin-saporin. Neuroscience 2010 Abstracts 585.5/XX19. Society for Neuroscience, San Diego, CA.

Summary: We have previously shown that the role of specific neurons in behavioral processes can be fruitfully studied using targeted toxins. Toxins composed of a targeting neuropeptide coupled to the ribosomal-inactivating toxin, saporin, are used to selectively destroy superficial dorsal horn neurons expressing the cognate peptide receptors followed by assessment of changes in pain behavior. In the present study, we sought to compare the anatomic effects of three closely related targeted toxins, each with different nocifensive behavioral effects. Rats were given single lumbar intrathecal injections of either galanin-saporin (Gal-SAP), neuropeptide Y-saporin (NPY-SAP), or dermorphin-saporin (Derm-SAP). Lumbar spinal cord sections from each rat were stained for each of the three receptors, GalR-1, Y1R and MOR (mu opiate) using standard immunoperoxidase technique. Each toxin produced a significant decrease in staining for its cognate receptor. Gal-SAP animals showed no change in either MOR or Y1R staining. NPY-SAP rats showed decreased staining for both GalR1 and MOR, and Derm-SAP rats were assessed for changes in expression of GalR1 and Y1R. These findings suggest overlaps between the populations of neurons that express the GalR1, Y1R, and MOR. Specifically, Y1R-expressing neurons also express GalR1 and MOR, probably by separate subpopulations of Y1R neurons. The results also suggest either that Gal-SAP only kills neurons that do not express either of the other two receptors, or some of the observed loss of receptors after NPY-SAP is due to secondary (transsynaptic) effects. Double- and triple-label fluorescent immunohistochemistry will be used to directly visualize receptor co-expression patterns and targeted toxin effects. These results will be valuable in interpreting the unique nocifensive behavioral effects of each of these targeted toxins.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12), Galanin-SAP (Cat. #IT-34), NPY-SAP (Cat. #IT-28)

Damage of GABAergic neurons in the medial septum-diagonal band (MSDB) reduces behaviorally-activated hippocampal acetylcholine efflux and impairs spatial working memory

Roland JJ, Janke KL, Savage LM, Servatius RJ, Pang KCH (2010) Damage of GABAergic neurons in the medial septum-diagonal band (MSDB) reduces behaviorally-activated hippocampal acetylcholine efflux and impairs spatial working memory. Neuroscience 2010 Abstracts 611.13/MMM64. Society for Neuroscience, San Diego, CA.

Summary: The septohippocampal pathway is mostly composed of cholinergic and GABAergic projections and has an established role in learning, memory and disorders of cognition. Most studies have focused on the role of the cholinergic system in learning, memory and disorders of cognition. Although MSDB cholinergic lesions do not result in learning impairments, changes in hippocampal acetylcholine (ACh) levels have been tied to memory functions where deficits or enhancements in memory were correlated with hippocampal ACh decreases or increases, respectively. The activity of MSDB cholinergic neurons is greatly influenced by GABAergic afferents, including those from GABAergic neurons within the MSDB. Recently, we’ve demonstrated that toxins that preferentially damage MSDB GABAergic neurons impair delayed match to position tasks, but not spatial reference memory. Interpretation of these results needs to take into account the fact that a MSDB GABAergic lesion would influence both septohippocampal cholinergic and GABAergic transmission. The current study examined the effect of MSDB GABAergic lesions on spontaneous alternation (Experiment 1) and a non-matching to position task (NMTP; Experiment 2) while concurrently using in vivo microdialysis to measure hippocampal ACh efflux. Adult male Sprague-Dawley rats received vehicle (PBS) or GABAergic (GAT-1 saporin) MSDB lesion and a hippocampal microdialysis cannula. In Experiment 1, treatment groups did not differ in terms of activity, alternation rates, or baseline and maze-activated ACh efflux. In Experiment 2, hippocampal ACh efflux was measured at two time points (early and late) across the acquisition of a delayed NMTP task. Overall, GAT1-saporin treated rats had lower accuracy scores across 10 days of maze training compared to the vehicle treated rats. Basal ACh release in the hippocampus was similar in vehicle and GAT1-saporin rats. During the two microdialysis sampling points, both groups of rats displayed significant increases in ACh efflux while performing the task. However, behaviorally activated ACh efflux was reduced in GABA-lesioned animals compared to vehicle treated rats. The results demonstrate that MSDB GABAergic lesions do not alter basal hippocampal ACh efflux, but can reduce ACh efflux when challenged cognitively. Future studies will attempt to determine whether reduced ACh efflux is due to damage of MSDB GABAergic neurons or a result of impaired working memory performance.

Related Products: GAT1-SAP (Cat. #IT-32)

Effects of basal forebrain cholinergic lesions and estradiol on relative levels of estrogen receptor mRNAs in the rat forebrain

Hammond R, Shinde A, Gibbs RB (2010) Effects of basal forebrain cholinergic lesions and estradiol on relative levels of estrogen receptor mRNAs in the rat forebrain. Neuroscience 2010 Abstracts 611.16/MMM67. Society for Neuroscience, San Diego, CA.

Summary: Beneficial effects of estradiol on cognitive performance are lost in response to cholinergic denervation of the hippocampus and frontal cortex. Effects of estradiol also decline with age and time following the loss of ovarian function, which parallels naturally-occurring declines in basal forebrain cholinergic function. We hypothesize that cholinergic impairment may alter the expression of estrogen receptors in specific regions of the brain, thereby decreasing estradiol effects. In the present study, quantitative RT-PCR was used to evaluate the effects of septal cholinergic lesions ± estradiol treatment on relative levels of three estrogen receptors, ERα, ERß, and GPR30. Young adult ovariectomized (OVX) rats received intraseptal injections of saline or 192 IgG-saporin (a selective cholinergic immunotoxin). One week later, rats received either silastic capsules containing 17ß-estradiol or a blank capsule, implanted s.c. Seven days later, rats were killed and the brains were dissected. Tissues from the hippocampus, frontal cortex, prefrontal cortex, striatum, and septum were collected. RNA was extracted and relative levels of ER mRNA determined. Levels within each sample were normalized to levels of GAPDH. Differences between treatments and controls were calculated using the ΔΔCt method. Preliminary data indicate that septal cholinergic lesions produced significant decreases in relative levels of ERα and ERß mRNA in the hippocampus, and an increase in ERß mRNA in the frontal cortex. Estradiol alone produced decreases in levels of ERα, ERß, and GPR30 mRNA in the frontal cortex, decreased levels of ERα and ERß mRNA in the septum, and increased levels of ERα mRNA in the striatum. In rats with cholinergic lesions that also received estradiol, decreased levels of ERα mRNA were detected in hippocampus and septum, and decreased levels of ERß mRNA also were detected in septum. Data suggest that some of the effects of cholinergic denervation on ER mRNA expression may be mitigated by estradiol treatment. These data show that cholinergic lesions significantly affect ER mRNA expression in the brain, and that effects are region-specific. Such effects could account for the loss of beneficial effects of estradiol on cognitive performance in association with age and time following menopause, as well as in association with specific neurodegenerative diseases such as Alzheimer’s disease.

Related Products: 192-IgG-SAP (Cat. #IT-01)

The arcuate nucleus of the hypothalamus controls the circadian distribution of sleep and feeding

Wiater MF, Mukherjee S, Dinh TT, Rooney E, Li A-J, Simasko SM, Ritter S (2010) The arcuate nucleus of the hypothalamus controls the circadian distribution of sleep and feeding. Neuroscience 2010 Abstracts 648.16/H17. Society for Neuroscience, San Diego, CA.

Summary: Integration of daily sleep and feeding rhythms is incompletely understood. We examined the role of the hypothalamic arcuate nucleus (Arc) in these processes using Arc microinjections of the targeted toxin, NPY-saporin (NPY-SAP), or control blank-saporin (B-SAP). NPY-sap targets and destroys NPY receptor-expressing neurons. We monitored 24 hr feeding over a 30-day period beginning 2 wks after the Arc injections, and used EEG recordings to assign vigilance states. Vigilance was divided into rapid-eye movement sleep (REMS), non-REMS (NREMS) and wake. NPY-SAP lesioned rats were hyperphagic , consuming up to 225% of pre-injection baseline. They rapidly became obese. While in the sleep-monitoring chambers, their body weight change per week ranged from 56 ± 9 g to 40.5 ± 4.5g, compared to 6 ± 0.4 g/wk for B-SAP rats. Their circadian pattern of food intake was severely disrupted, such that intake in light and dark periods were approximately equal (43% of their total intake was consumed in the light period vs. 25% in B-SAP controls). Sleep patterns were also significantly disrupted in the NPY-SAP animals. The occurrence of rapid eye movement sleep (REMS) was inverted in phase, occurring mainly at night, rather than during the day. NonREMS was distributed equally across day and night, instead of occurring predominantly during the day. However, 24-hr total REMS and NREMS time was normal. B-SAP controls had normal sleep patterns, with NREMS and REMS occurring predominantly in the light phase. To determine if the change in sleep pattern was due to the change in feeding patterns, we restricted access to food to the dark period for 4 days. NPY-SAP treated animals doubled their food intake in the dark period. However, sleep patterns were not changed compared to the ad libitum feeding period in either NPY-SAP or B-SAP rats. After 7 days of ad libitum feeding, we restricted food access to the light period for 4 days. Again, NPY-SAP animals doubled their intake during the feeding period, this time during the light phase, and sleep patterns were not changed in either group by the restricted feeding. By 100 days post-lesion, the NPY-sap animals were still obese, but the patterning and amount of their food intake were becoming similar to controls. However, when evaluated again, sleep patterns were still altered to the same degree as observed early post-lesion. These results confirm the importance of NPY-receptive Arc neurons in controlling food intake. They also reveal an unexpected role for the Arc in the timing of both NREMS and REMS that appears to be independent of the patterning of food intake.

Related Products: NPY-SAP (Cat. #IT-28), Blank-SAP (Cat. #IT-21)

NK-1 Receptors in the RVM: Involvement in hyperalgesia produced by naloxone but not in morphine analgesia

Khasabov SG, Fliss PM, Rao AS, Simone DA (2010) NK-1 Receptors in the RVM: Involvement in hyperalgesia produced by naloxone but not in morphine analgesia. Neuroscience 2010 Abstracts 678.15/QQ2. Society for Neuroscience, San Diego, CA.

Summary: The rostral ventromedial medulla (RVM) is a crucial supraspinal site for opioid analgesia. Descending modulation of nociceptive transmission by the RVM can be antinociceptive, which is associated with increased activity of OFF cells, or pronociceptive, which is related to activation of ON cells. Analgesia produced by opioids at the RVM level is due to direct inhibition of ON cells and the indirect increase in discharge of OFF cells. A subpopulation of neurons in the RVM (approximately 7%) express neurokinin-1 receptors (NK-1R), which are receptors for substance P (SP). We have shown that NK-1R in the RVM are located primarily on ON cells and contribute to descending facilitation of nociception. We suggest that elimination of NK-1R expressing neurons by the specific saporin toxin conjugate SSP-SAP, will reduce the number of ON cells and thereby decrease descending facilitation without affecting antinociception associated with activity of OFF cells. We therefore determined the contribution of NK-1R expressing neurons in the RVM to changes in nocifensive behaviors produced by morphine or the opioid receptor antagonist naloxone by eliminating NK-1R expressing neurons. Adult male Sprague Dawley rats were pretreated with injection of SSP-SAP (1 µM/0.5 µl) or inactive toxin into the RVM. Ablation of NK-1R possessing neurons was determined histologically and did not alter tale flick or paw withdrawal latencies to heat for up to 4 weeks following treatment, indicating that these neurons do not modulate acute nociception. Morphine (30 µg/0.5 µl) injected into the RVM of control rats or rats pretreated with SSP-SAP increased tail flick latencies approximately 133.5 ± 20.8% and 140.4 ± 8.3%, respectively. The increase in paw withdrawal latency following morphine was also similar between groups. However, injection of naloxone (50 µg/0.5 µl) in control rats decreased tail flick latencies for 90 min with a maximal reduction of 32.2 ± 4.1%, whereas in rats treated with SSP-SAP latencies decreased by 17.8 ± 4.9% and for only 30 min. A similar pattern of effects was found on paw withdrawal latencies to heat. These data support the notion that ON cells possess NK-1Rs and contribute to facilitation of nociceptive transmission.

Related Products: SSP-SAP (Cat. #IT-11)

Morphine-induced pain hypersensitivity, but not opioid tolerance, depends on microglia-mediated alteration of Cl- homeostasis in spinal dorsal horn

Ferrini F, Mattioli TAM, Lorenzo L-E, Godin A, Wiseman PW, Ribeiro-Da-Silva A, Cahill CM, Milne B, De Koninck Y (2010) Morphine-induced pain hypersensitivity, but not opioid tolerance, depends on microglia-mediated alteration of Cl- homeostasis in spinal dorsal horn. Neuroscience 2010 Abstracts 678.9/PP14. Society for Neuroscience, San Diego, CA.

Summary: Prolonged morphine exposure leads to a reduction of the antinociceptive effect (opioid tolerance) and to an increase in pain sensitivity. Recent evidences suggest that these side effects share similar mechanisms with those underlying neuropathic pain. We have shown that the release of BDNF by activated microglia following peripheral nerve injury causes a decrease in KCC2 activity in the spinal dorsal horn (DH) and weakens Cl−-mediated inhibition through GABAA and glycine receptors. Here, we tested the hypothesis that a similar cascade of events underlies morphine-induced pain hypersensitivity. Adult rats, receiving either morphine (10mg/Kg s.c. twice a day) or saline, were tested for nociceptive thresholds prior to and 1 h after morphine injections each day. Morphine induced tolerance within 2 days and hyperalgesia within 5 days. The hyperalgesia, but not the tolerance, was reversed by intrathecal (i.t.) administration of the anti-mac1 saporin-conjugated antibody (an immunotoxin targeted against microglia) or a TrkB blocking antibody, confirming involvement of both microglia and BDNF in the morphine-dependent hyperalgesia. Microglial activation was confirmed by an increased OX-42 staining after chronic morphine and was blocked by i.t. (-)-naloxone, as well as by (+)-naloxone. Interestingly, (+)-naloxone, while prevented microglia activation, had little effect on morphine tolerance. After 7 days of treatment, rats were sacrificed and DH lamina I-II neurons were recorded by imposing a Cl- load (29 mM). A depolarizing shift in EGABA was observed in lamina I neurons from morphine-treated rats (-42 ± 1 mV, n=6) compared to controls (-50 ± 2 mV, n=5, P<0.05) indicating a weaker Cl- extrusion capacity in these cells. A similar effect was also observed following 3h in vitro incubation of spinal cord slices with morphine (1 μM). No change in EGABA was observed either in the presence of opioid receptor antagonists or the TrkB blocking antibody, confirming the involvement of BDNF in the morphine-signalling pathway. Interestingly, morphine did not produce any change in EGABA in lamina II neurons. To confirm the participation of altered Cl- homeostasis on morphine-induced hyperalgesia in vivo, we administered the carbonic anhydrase inhibitor acetazolamide (i.t.) to minimize the bicarbonate-mediated component of GABAA/glycine currents. Acetazolamide was sufficient to restore inhibition in spinal DH neurons and to reverse the morphine-dependent hyperalgesia. Our data suggest that microglial activation and BDNF release following chronic morphine treatment may alter Cl- extrusion capacity of spinal lamina I neurons and increase pain hypersensitivity.

Related Products: Mac-1-SAP rat (Cat. #IT-33)

Functional cholinergic neurons from human embryonic stem cells

Liu Y, Krencik R, Liu H, Ma L, Zhang X, Zhang S-C (2010) Functional cholinergic neurons from human embryonic stem cells. Neuroscience 2010 Abstracts 331.5/B19. Society for Neuroscience, San Diego, CA.

Summary: Basal forebrain cholinergic neurons play a critical role in regulating memory and cognition. Degeneration or dysfunction of these neurons is associated with neurological conditions including Alzheimer’s disease and dementia. In this study, we aimed at generating cholinergic neurons from human embryonic stem cells (hESCs) for therapeutic development. hESCs were first differentiated to primitive neuroepithelial cells in a chemically defined medium. In the presence of sonic hedgehog, over 97% of the differentiated cells became Nkx2.1-expressing ventral forebrain progenitors. These ventral progenitors further differentiated to cholinergic neurons with basal forebrain characteristics by expressing ChAT, VAChAT, FoxG1, Nkx2.1, Islet1, ßIII-tubulin, MAP2, P75, Synapsin but not GABA, Glutamate, or Mash2. The hESC-generated cholinergic neurons were electrophysiologically active in vitro. Following transplantation into the hippocampus of mice, in which cholinergic neurons in the medial septum were destroyed by IgG-P75-saporin, the grafted human cells produced large cholinergic neurons. The animals transplanted with cholinergic neurons demonstrated an improvement in learning and memory deficit. These results indicate that the human stem cell-generated cholinergic neurons are functional, thus providing a new source for drug discovery and cell therapy for neurological disorders that affect cholinergic neurons.

Related Products: mu p75-SAP (Cat. #IT-16)

ATS Poster of the Year Winner

Shopping Cart
Scroll to Top