1. Home
  2. Knowledge Base
  3. References
  4. Morphine-induced pain hypersensitivity, but not opioid tolerance, depends on microglia-mediated alteration of Cl- homeostasis in spinal dorsal horn

Morphine-induced pain hypersensitivity, but not opioid tolerance, depends on microglia-mediated alteration of Cl- homeostasis in spinal dorsal horn

Ferrini F, Mattioli TAM, Lorenzo L-E, Godin A, Wiseman PW, Ribeiro-Da-Silva A, Cahill CM, Milne B, De Koninck Y (2010) Morphine-induced pain hypersensitivity, but not opioid tolerance, depends on microglia-mediated alteration of Cl- homeostasis in spinal dorsal horn. Neuroscience 2010 Abstracts 678.9/PP14. Society for Neuroscience, San Diego, CA.

Summary: Prolonged morphine exposure leads to a reduction of the antinociceptive effect (opioid tolerance) and to an increase in pain sensitivity. Recent evidences suggest that these side effects share similar mechanisms with those underlying neuropathic pain. We have shown that the release of BDNF by activated microglia following peripheral nerve injury causes a decrease in KCC2 activity in the spinal dorsal horn (DH) and weakens Cl−-mediated inhibition through GABAA and glycine receptors. Here, we tested the hypothesis that a similar cascade of events underlies morphine-induced pain hypersensitivity. Adult rats, receiving either morphine (10mg/Kg s.c. twice a day) or saline, were tested for nociceptive thresholds prior to and 1 h after morphine injections each day. Morphine induced tolerance within 2 days and hyperalgesia within 5 days. The hyperalgesia, but not the tolerance, was reversed by intrathecal (i.t.) administration of the anti-mac1 saporin-conjugated antibody (an immunotoxin targeted against microglia) or a TrkB blocking antibody, confirming involvement of both microglia and BDNF in the morphine-dependent hyperalgesia. Microglial activation was confirmed by an increased OX-42 staining after chronic morphine and was blocked by i.t. (-)-naloxone, as well as by (+)-naloxone. Interestingly, (+)-naloxone, while prevented microglia activation, had little effect on morphine tolerance. After 7 days of treatment, rats were sacrificed and DH lamina I-II neurons were recorded by imposing a Cl- load (29 mM). A depolarizing shift in EGABA was observed in lamina I neurons from morphine-treated rats (-42 ± 1 mV, n=6) compared to controls (-50 ± 2 mV, n=5, P<0.05) indicating a weaker Cl- extrusion capacity in these cells. A similar effect was also observed following 3h in vitro incubation of spinal cord slices with morphine (1 μM). No change in EGABA was observed either in the presence of opioid receptor antagonists or the TrkB blocking antibody, confirming the involvement of BDNF in the morphine-signalling pathway. Interestingly, morphine did not produce any change in EGABA in lamina II neurons. To confirm the participation of altered Cl- homeostasis on morphine-induced hyperalgesia in vivo, we administered the carbonic anhydrase inhibitor acetazolamide (i.t.) to minimize the bicarbonate-mediated component of GABAA/glycine currents. Acetazolamide was sufficient to restore inhibition in spinal DH neurons and to reverse the morphine-dependent hyperalgesia. Our data suggest that microglial activation and BDNF release following chronic morphine treatment may alter Cl- extrusion capacity of spinal lamina I neurons and increase pain hypersensitivity.

Related Products: Mac-1-SAP rat (Cat. #IT-33)