1. Home
  2. Knowledge Base
  3. References
  4. Novel object recognition and social interaction in rats lacking cortical cholinergic innervation; comparing manual and digital video tracking systems

Novel object recognition and social interaction in rats lacking cortical cholinergic innervation; comparing manual and digital video tracking systems

Savage ST, Olson L, Mattsson A (2010) Novel object recognition and social interaction in rats lacking cortical cholinergic innervation; comparing manual and digital video tracking systems. Neuroscience 2010 Abstracts 506.9/LLL49. Society for Neuroscience, San Diego, CA.

Summary: Alterations in cholinergic signaling in the brain have been implicated as a contributing factor in the pathogenesis of schizophrenia. We have shown that cholinergic denervation of cortex cerebri by stereotaxic infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis in adult rats leads to an enhanced locomotor sensitivity to amphetamine, as well as, a potentiated dopamine release in nucleus accumbens. We have also shown that this cortical cholinergic denervation leads to an increased locomotor response to the NMDA receptor antagonist phencyclidine (PCP), suggesting that disruption of cortical cholinergic activity can lead to disturbances of glutamatergic transmission. We hypothesize that this loss of cortical cholinergic input alters the activity of cortical glutamatergic neurons and in turn, their regulation of subcortical dopamine neurons. In current studies we are investigating memory functions using the novel object recognition task (NOR) and social interaction in adult male Lister hooded rats with cholinergic denervation of neocortex. The behavioral tasks are being conducted under normal conditions and with a PCP-challenge. The data are analyzed both manually by a trained observer, and with a nose point digital video tracking system (Clever Sys Inc.). Manually scoring behavioral data requires extensive observer training, is subject to inter-observer variability, and is time consuming. An automated tracking system could potentially improve upon these issues, however is prone to other problems, including the difficulty of accurately tracking multiple body points. Furthermore, the Lister hooded fur has two different colors which proves difficult for computerized systems to accurately determine the body points. A comparison of the manual scoring and the computerized tracking system is being conducted to determine the most reliable method for each behavioral task. Preliminary results indicate that the cholinergically denervated rats performed the NOR task under normal conditions as well as the controls, however failed to show a preference for the novel object under PCP-challenge. These results were obtained through analysis with both the manual and automated system. Despite fur color difficulties, the video tracking system was able to analyze the NOR task and accurately calculate the distance traveled, which is not easily obtained through manual scoring. These initial results indicate that cortical cholinergic deficits, in addition to a potentiation of the locomotor response to PCP, can also lead to an enhanced sensitivity to PCP-induced cognitive impairments.

Related Products: 192-IgG-SAP (Cat. #IT-01)