- Home
- Knowledge Base
- sfn2008
sfn2008
Intra cisterna magna and Rostral ventromedial medulla injection of anti-Serotonin transporter-Saporinpertussis enhanced somatotopically different c-Fos expression and pain related behaviour in the medullary dorsal horn in rats
Sugiyo S, Uehashi D, Masawaki A, Ohyamaguchi A, Abe T, Yonehara N, Takemura M (2008) Intra cisterna magna and Rostral ventromedial medulla injection of anti-Serotonin transporter-Saporinpertussis enhanced somatotopically different c-Fos expression and pain related behaviour in the medullary dorsal horn in rats. Neuroscience 2008 Abstracts 369.11/KK23. Society for Neuroscience, Washington, DC.
Summary: The rostral ventromedial medulla (RVM) is a key center in descending pain modulator, which contain serotonergic neurons having descending projectional terminals in the trigeminal caudal nucleus (Vc; medullary dorsal horn). The functional significance of serotonergic neurons in the RVM is largely unknown. Pretreatment with anti IgG serotonin transporter conjugated with neurotoxin, saporin (anti-SERT-SAP; Advanced Targeting Systems) selectively eliminates cells bearing serotonin transporter, namely serotonergic neurons. 2-4 weeks after injection of anti-SERT-SAP (0.5 µM, 10 nl) into the RVM, the number of serotonin-immunoreactive (IR) cells in the RVM significantly decreased. Formalin injection (1,25% in saline) into the upper lip induced biphasic nociceptive pain-related behavior (PRB). In the rats anti-SERT-SAP-pretreated into the RVM, showed decreased the number of formalin-induced PRB at 1st and 2nd phase compared with the Blank-SAP-pretreated control. 2-4 weeks after intra cisterna magna (CM) pretreatment of anti-SERT-SAP(5 µM, 5 µl), the number of serotonin-IR cells in the RVM also reduced. In stark contrast to the results of pretreatment into the RVM, anti-SERT-SAP-pretreated rats into the CM increased the number of formalin-induced PRB at 1st and 2nd phase. These results indicate that serotonergic neurons in the RVM are constituted by two groups, 1) having pronociceptive function and 2) antinociceptive function projecting to the superficial layers of the Vc.
Related Products: Anti-SERT-SAP (Cat. #IT-23)
Selective lesion of retrotrapezoid Phox2b-expressing neurons attenuates the central chemoreflex in rats
Moreira TS, Takakura AC, Stornetta RL, Guyenet PG (2008) Selective lesion of retrotrapezoid Phox2b-expressing neurons attenuates the central chemoreflex in rats. Neuroscience 2008 Abstracts 383.3/RR70. Society for Neuroscience, Washington, DC.
Summary: Injection of the neurotoxin saporin-substance P (SSP-SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a type of pH-sensitive interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b+TH-). We show that RTN contains around 2100 Phox2b+TH- cells. Injections of SSP-SAP into RTN destroyed Phox2b+TH- neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Two weeks after SSP-SAP, the apneic threshold measured under anesthesia was unchanged when fewer than 57% of the Phox2b+TH- neurons were destroyed. However, destruction of 70 ± 3.5 % of these cells was associated with a large rise of the apneic threshold (from 5.6 to 7.9% end-expiratory pCO2). In anesthetized rats with unilateral lesions of around 70% of the Phox2b+TH- neurons, acute inhibition of the contralateral intact RTN with muscimol instantly eliminated phrenic nerve discharge (PND) but normal PND could usually be elicited by strong peripheral chemoreceptor stimulation (8/12 rats). Muscimol had no effect in rats with an intact contralateral RTN. In conclusion, the destruction of the Phox2b+TH- neurons is a plausible cause of the respiratory deficits caused by injection of SSP-SAP into RTN. At least 70% of these cells must be killed to cause a severe attenuation of the central chemoreflex under anesthesia. The loss of an even greater percentage of these cells would presumably be required to produce significant breathing deficits in the awake state.
Related Products: SSP-SAP (Cat. #IT-11)
Chemoresponsiveness of the hypothalamic paraventricular nucleus (PVN) is influenced by neuropeptide Y
Mack SO, Wu M, Xu G (2008) Chemoresponsiveness of the hypothalamic paraventricular nucleus (PVN) is influenced by neuropeptide Y. Neuroscience 2008 Abstracts 383.7/RR74. Society for Neuroscience, Washington, DC.
Summary: The hypothalamic paraventricular nucleus (PVN) initiates autonomic responses to stress and behavioral changes. Neuropeptide Y-containing neurons primarily from the arcuate nucleus and, to a lesser extent, from the brainstem innervate preautonomic oxytocin-containing neurons in the PVN. The role of the PVN in mediating the effects of NPY on energy balance has been studied extensively; however, whether NPY influences respiratory drive via the PVN is not known. Previously, we demonstrated that stimulation of the PVN modulates cardiorespiratory responses via oxytocinergic innervation of neurons in the rostral ventrolateral region of the medulla oblongata where rhythm generating neurons are located. In this study, we selectively lesioned neurons in the PVN bilaterally with neurotoxin neuropeptide Y-saporin (NPY-SAP; 50 ng/100 μl per side) or blank-saporin (control vehicle). Both groups of rats showed similar (P>0.05) increases in body weight gain and intake of food and water over an 8 week period after lesioning. Core body temperature, measured at the same time every day, was also similar for both groups (P>0.05). At 4 weeks post lesioning, NPY-SAP treatment had no effect (P>0.05) on respiratory frequency (fR), tidal volume (VT) and minute ventilation (VE ) in awake, unrestrained animals breathing room air. During exposure to a hypercapnic challenge (5% CO2) for 10 minutes, fR (135 ± 7 vs 114 ±5 breaths min-1) and VE (154 ±13 vs 114± 5 ml min-1 100g-1 ) for the treated animals were significantly elevated (P<0.05) above responses for the control rats. Tidal volume for the treated (1.1 ±0.06) and the control (1.0 ± 0.03) groups was not different (P>0.05). Sensitivity to CO2 with respect to fR in the treated animals reached a peak at 4 weeks and declined thereafter over the next 4 weeks. While there were no apparent changes in morphology or number of parvocellular oxytocin-containing neurons 4 weeks after lesioning, abnormal morphology and a significant (P<0.05) reduction in oxytocin immunoreactive cells were prominent by 8 weeks post treatment. These findings indicate that NPY plays a role in modulating the respiratory response to hypercapnic stress through oxytocin neurons in the PVN. Further studies are needed to determine whether alterations in this pathway may be involved in the onset of hypoventilation associated with obesity.
Related Products: NPY-SAP (Cat. #IT-28)
Unilateral lesions of lateral hypothalamic orexin neurons impair surprise-induced enhancements of learning
Holland PC, Angeli N, Lasseter H, Wheeler DS (2008) Unilateral lesions of lateral hypothalamic orexin neurons impair surprise-induced enhancements of learning. Neuroscience 2008 Abstracts 387.16/SS63. Society for Neuroscience, Washington, DC.
Summary: Recent evidence indicates that hypothalamic orexin (hypocretin) neurons are importantly involved in arousal, aspects of learned motivational function, and the cholinergic mediation of sustained attention and the enhanced detection of weak but significant cues. Here we examined the role of these neurons in the modulation of attention in the associative learning of rats. The surprising omission of an expected event can enhance attention to cues present at the time of surprise, and hence facilitate subsequent learning about those cues. In previous research, we showed that circuitry including the amygdala central nucleus (CeA), the substantia nigra pars compacta, cholinergic neurons in the substantia innominata/nucleus basalis, and portions of the medial prefrontal and posterior parietal cortex, form a network essential for this surprise-enhanced learning. In the present study, rats received orexin-saporin lesions of the lateral hypothalamus (LH) in one hemisphere and ibotenic acid lesions of CeA in the other. Because most projections between LH and CeA are ipsilateral, this combination of lesions functionally disconnects CeA from LH orexin neurons. Rats in three control groups received unilateral lesions of LH or CeA (with sham lesions of the other region) or sham lesions of both regions. The rats were then trained in a task in which attention was manipulated by shifting a predictive relation between two cues. First, all rats received serial light-tone pairings, half of which were followed by food. Next, for half of the rats in each lesion condition the tone was omitted on nonreinforced trials, whereas the remaining rats continued to receive the same light-tone trials as before. Finally, attention to the light was assessed by measuring the rate of learning a new light-food relation. If the rats were surprised by the omission of tone during the previous phase, then attention to the light would be enhanced, resulting in faster acquisition of light-food conditioning. Consistent with previous findings, sham-lesioned rats and rats with unilateral CeA lesions showed this surprise-induced enhancement. By contrast, rats with unilateral LH lesions showed no such enhancement of learning, but otherwise performed comparably to controls. Notably, damage to CeA contralateral to the LH damage produced no additional impairment. Thus, LH orexin neurons play an important role in the surprise-induced enhancement of attention and learning, but not solely by their interactions with CeA.
Related Products: Orexin-B-SAP (Cat. #IT-20)
A synergistic role for GABAergic and cholinergic neurons of the medial septum in spatial reference memory processing: assessment with the Morris water-maze and a novel double-H maze in rats
Lecourtier L, Leroux E, Cosquer B, Cassel JC (2008) A synergistic role for GABAergic and cholinergic neurons of the medial septum in spatial reference memory processing: assessment with the Morris water-maze and a novel double-H maze in rats. Neuroscience 2008 Abstracts 389.10/TT38. Society for Neuroscience, Washington, DC.
Summary: The medial septum – from which GABAergic and cholinergic neurons project to the hippocampus – might be one of the key structures involved in hippocampal-dependent spatial memory processing. Indeed, lidocaine-induced septal inactivation disrupts encoding and retrieval, but not consolidation of a spatial memory in the water maze. Furthermore, the activation of septal 5-HT1A receptors prevents encoding but neither immediate consolidation nor retrieval of such a memory. As i) 5-HT1A receptors are located on most GABAergic and a significant part of cholinergic neurons of the medial septum, and ii) highly selective cholinergic lesions in the medial septum weakly affect spatial learning, it is possible that normal spatial memory processing depends on a cooperation between cholinergic and GABAergic neurons of this region. To address this possibility using selective lesions, 192 IgG-Saporine (IgG group) or Orexine-Saporine (OREX group) was infused into the septum to damage cholinergic or GABAergic neurons, respectively. In a third group (IgG/OREX group), both lesions were combined. Sham-operated rats were used as controls. The lesion effects were assessed on locomotor activity and on acquisition/retrieval of two water-maze tasks, the Morris maze and the double-H maze. In separate groups, retrieval was tested at three post-acquisition intervals in the Morris maze, namely 1, 5 and 25 days, and two post-acquisition periods in the double H maze, namely 5 and 25 days. Only the combined lesion resulted in nocturnal hyperactivity. In the Morris water-maze, at 25 days, there was no retrieval, whatever the group; whereas at the 1-day delay all groups retrieved the platform, at the 5-day delay, IgG and OREX rats showed normal performance while IgG/OREX rats were impaired. In the double-H maze, at the 5-day delay all groups remembered the platform location. These effects will be compared to those found at the 25-day delay (experiment currently running). Our data show that the GABAergic and cholinergic neurons of the septum synergistically contribute to the regulation of hippocampal-dependent (declarative-like) spatial memory processing.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Learning strategy selection in the water maze in medial septal electrolytic and selective cholinergic neurons lesioned rats
Burjanadze M, Beselia G, Chkhikvishvili N, Kotaria N (2008) Learning strategy selection in the water maze in medial septal electrolytic and selective cholinergic neurons lesioned rats. Neuroscience 2008 Abstracts 389.5/TT33. Society for Neuroscience, Washington, DC.
Summary: In this experiment the ability of medial septal electrolytic, selective ACh lesioned (by immunotoxin 192 IgG-saporin) and sham-operated rats, to learn the location of a visible, as well as submerged platform in a water maze was investigated. A total of 36 male outbred albino rats were used in the study. All experiments were approved by the Animal Care and Use Committee of the Institute and were in accordance with the principles of laboratory animal care. The rats’ responses in the competition test were classified as either cue or place directed, based on the swim path for those trials. Sham-operated rats acquired both the visible and hidden platform versions of the task, but when required to choose between the spatial location they had learned and the visible platform in a new location, majority of them swam first to the old spatial location. The medial septal electrolytic lesioned rats acquired the visible platform version of the water maze task but failed to learn the platform location in space. When the visible platform was moved to a new location they often swam directly to it. The medial septal selective ACh lesioned rats, as well as sham-operated, acquired the platform location in space. Sham-operated and selective ACh lesioned rats identified as place responders, had significantly more accurate searches during hidden platform training, providing additional evidence of their effective use of a place learning strategy rather than medial septal electrolytic lesioned rats. These findings suggest that the septo-hippocampal system is essential for accurate spatial learning and suggest its role in processing information about the spatial environment, but deficits observed after septal electrolytic lesions cannot be accounted solely to the loss of hippocampal ACh and raised the unexpected possibility that hippocampal ACh is not essential for all types of hippocampal-dependent memory.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Galanthamine does not attenuate attentional or temporal impairments subsequent to cholinergic deafferentation of the cortex or hippocampus
Martin MM, Weathered SL, Wagner SJ, Wallace DG (2008) Galanthamine does not attenuate attentional or temporal impairments subsequent to cholinergic deafferentation of the cortex or hippocampus. Neuroscience 2008 Abstracts 441.12/T4. Society for Neuroscience, Washington, DC.
Summary: The role of the basal forebrain cholinergic system in early symptomology of dementia of the Alzheimer’s type (DAT) remains an area of intense debate. Although involvement of the basalocortical cholinergic system in attentional processing has been established, function of the septohippocampal cholinergic system remains to be determined. A recent study demonstrated a double dissociation between these systems in the organization of rat food protection behavior that may parallel the attentional impairments and temporal disorientation observed during the early stages of DAT. The current study sought to examine whether an acetylcholinesterase inhibitor currently used for the treatment of DAT (i.e., galanthamine) could attenuate these deficits. Consistent with previous research, intraparenchymal injections of 192 IgG-Saporin into the nucleus basalis or medial septum area in female Long Evans rats produced dissociable effects on the organization of food protection behavior. Specifically, nucleus basalis lesions selectively reduced the number of successful food protection behaviors; whereas, medial septum lesions selectively disrupted the temporal organization of food protection behavior. These impairments were not attenuated by the administration of 3 mg/kg s.c. galanthamine twice daily. Results of this study suggest that the modest benefits afforded by galanthamine administration in DAT patients may not reflect improved attention or temporal orientation. Continued studies aimed at understanding the neural dysfunction underlying these deficits may lead to the development of novel therapeutic agents for DAT.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Sonic hedgehog expression and glial reaction after neurotoxic lesion of adult mice spinal cord by Cholera Toxin-B Saporin
Gulino R, Gulisano M (2008) Sonic hedgehog expression and glial reaction after neurotoxic lesion of adult mice spinal cord by Cholera Toxin-B Saporin. Neuroscience 2008 Abstracts 124.14/B14. Society for Neuroscience, Washington, DC.
Summary: The spinal cord (SC) has ever been considered non-neurogenic because no neurons seem to be generated in the intact SC and only very few recent articles have reported spontaneous generation of new neurons after lesion. Conversely, many studies have demonstrated the occurrence of glial reaction after either mechanical or selective neurotoxic lesion. Sonic hedgehog (Shh) is a member of hedgehog family of secreted glycoproteins, which stimulate cell proliferation as well as neuron and oligodendrocyte differentiation during either development and adulthood. Few data are available about its role in the adult SC after injury. In this study, we used Cholera toxin-B saporin (CTB-sap), a retrogradely transported, ribosome-inactivating toxin, to induce a mild neurotoxic depletion of motoneurons within lumbar SC and to subsequently study the expression levels of Shh and the possible cell proliferation and differentiation within the depleted SC of young adult mice. After an injection of CTB-sap into the gastrocnemius muscle, we found a 30% depletion of lumbar SC motoneurons, and a comparable decrease of ChAT expression levels in the lumbar SC, one week after lesion. Moreover, we found a significant down-regulation of Shh expression, which significantly correlate with ChAT decrease. Both proteins recovered to near normal levels of expression at one month after lesion. The expression of ChAT also correlate with the performance of mice on a grid walk test. So, the observed spontaneous recovery of locomotion was associated with the spontaneous recovery of ChAT and Shh expression. Moreover, we observed a cell proliferation within the depleted SC parenchyma, which was associated with a visible increase of GFAP-positive astrocytes in the same area. Colocalization studies showed that the majority of these proliferating cells are active astrocytes. We hypothesized that Shh expression could have a role in both SC plasticity and the observed glial reaction after neurotoxic lesion. The restoration of normal levels of Shh during the first days after lesion could be a way to partially inhibit glial reaction and to improve functional recovery.
Related Products: CTB-SAP (Cat. #IT-14)
A brainstem generator for cutaneous allodynia associated with migraine headache
Edelmayer RM, Vanderah TW, Majuta L, Fioravanti B, De Felice M, Chichorro JG, Ossipov MH, King T,Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F (2008) A brainstem generator for cutaneous allodynia associated with migraine headache. Neuroscience 2008 Abstracts 171.15/LL16. Society for Neuroscience, Washington, DC.
Summary: Migraine patients often demonstrate cutaneous allodynia that begins unilaterally and intracranially and spreads, via unknown mechanisms, to contralateral and extracranial body regions. As cutaneous allodynia likely reflects the development of central sensitization, we hypothesized that descending facilitatory influences from the rostral ventromedial medulla (RVM) might underlie the generalized expression of this phenomenon. We employed a modified model of application of inflammatory mediators (IM) to the dura of unanesthetized animals and explored the possible requirement of a brainstem site for expression of generalized cutaneous allodynia. Rats were surgically implanted with two cannulas, one of which permitted the application of IM to the surface of the dura and the other for administration of compounds to the RVM, 7 days after surgery. Tactile withdrawal thresholds of the peri-ocular region of the face as well as the hindpaws were tested pre-surgery, post-surgery, and up to 6 hr after application of IM. Bupivacaine or YM022 (CCK2 receptor antagonist) were administered to the RVM at various times after IM. In some studies dermorphin-saporin was administered as a single microinjection to elicit a cytotoxic effect on presumed pain facilitation cells in the RVM; these rats were tested with IM after a further 28 days. Recordings of RVM “ON” and “OFF” cell activity were also performed in separate groups of naïve animals prior to, and after, IM application to the dura. Dural IM produced robust facial and hindpaw allodynia which peaked after approximately 3 hr and recovered to baseline thresholds by approximately 6 hr. RVM bupivacaine, YMO22, or cytotoxic destruction of pain facilitation cells had no effects on sensory thresholds alone, but prevented or significantly attenuated the expression of IM-induced cutaneous allodynia. In addition, IM applied to the dura produced a sustained increase in the discharge of RVM ON cells while transiently inhibiting OFF cells. Facial and hindpaw allodynia associated with dural stimulation may be a useful surrogate of migraine-associated pain which may be exploited mechanistically for the development of novel therapeutic strategies. The data demonstrate the requirement of descending facilitation from the RVM for the expression of cranial and extracranial cutaneous hypersensitivity and offer direct evidence of brainstem involvement in cutaneous allodynia associated with headache pain.
Related Products: CCK-SAP (Cat. #IT-31)
Lumbosacral-bulbo-spinal loop relayed by RVM on-cells regulates visceral nociception and modulates inhibitory effects of pregabalin and ondansetron
Sikandar S, Dickenson AH (2008) Lumbosacral-bulbo-spinal loop relayed by RVM on-cells regulates visceral nociception and modulates inhibitory effects of pregabalin and ondansetron. Neuroscience 2008 Abstracts 269.4/GG19. Society for Neuroscience, Washington, DC.
Summary: Descending controls from brainstem nuclei including the rostral ventromedial medulla (RVM) have been shown to play an important role in visceral pain, and compounds modulating serotonergic receptor activity and compounds targeting the α2δ subunit of voltage-gated calcium channels have demonstrated clinical efficacy in providing symptomatic relief in patients with visceral hyperalgesia. We investigated the role of RVM on-cells and a serotonergic lumbosacral-bulbo-spinal loop in visceral hyperalgesia and examined the antihyperalgesic effects of ondansetron and pregabalin in modifying visceral pain responses to colorectal distension (CRD) in rats. An in vivo model of visceral pain was established involving CRD and a reliable EMG recording protocol for measuring activity in the external oblique muscle following CRD for quantifying evoked visceromotor responses (VMR) in Sprague-Dawley rats. Changes in VMR evoked by CRD in a range of 10-80 mmHg were recorded following administration of ondansetron (50 μg/kg i.t.) and pregabalin (30 mg/kg s.c.) in naïve rats and rats pretreated with 0.25% intracolonic mustard oil (MO) to induce colonic hyperalgesia. Moreover, RVM on-cells were selectively ablated with injection of the neurotoxin saporin conjugated to the μ-receptor agonist dermorphin (DermSAP) using stereotaxic techniques. Twenty-eight days post-injection, the VMR were compared between naïve, SAP and Derm-SAP rats in control conditions and following intracolonic MO. CRD produced graded VMR responses that were facilitated by intracolonic MO. Both ondansetron and pregabalin were shown to effectively reduce evoked VMR to CRD in naïve rats and MO pretreated rats by antagonizing spinal 5-HT3 receptors and by binding to the α2δ subunit of voltage-gated calcium channels, respectively. Moreover, DermSAP pretreatment was shown to reduce overall evoked VMR, and the antihyperalgesic efficacies of ondansetron and pregabalin were also shown to be modified by the loss of on-cells in DermSAP rats. Furthermore, we verified immunohistochemically RVM on-cell ablation in DermSAP rats and quantified RVM 5-HT cell intensity between naïve, SAP and DermSAP rats. This study illustrates the role of 5-HT3-mediated descending facilitatory controls in visceral pain as well as providing evidence for the antihyperalgesic efficacy of the second generation α2δ ligand pregabalin in the CRD model. Moreover, evidence is provided for a facilitatory serotonergic lumbosacral-bulbo-spinal loop relayed by RVM on-cells that is evoked by CRD and modulates efficacies of pregabalin and ondansetron.
Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)