- Home
- Knowledge Base
- sfn2006
sfn2006
Unilateral ablation of neurokinin-1 receptor-expressing (NK1R) neurons within the preBötzinger complex (preBötC) in adult rats disrupts breathing during sleep but not during wakefulness
McKay LC, Feldman JL (2006) Unilateral ablation of neurokinin-1 receptor-expressing (NK1R) neurons within the preBötzinger complex (preBötC) in adult rats disrupts breathing during sleep but not during wakefulness. Neuroscience 2006 Abstracts 455.4. Society for Neuroscience, Atlanta, GA.
Summary: In adult rats, as the number of ablated preBötC NK1R neurons increases, breathing becomes increasingly disrupted during sleep(1), eventually resulting in an ataxic breathing pattern during wakefulness when cell loss is >80%(1,2). Here we determine whether ablation of fewer preBötC NKIR neurons leads to sleep-disordered breathing (SDB), while breathing during wakefulness remains stable. Adult male Sprague Dawley rats (n=8) were anesthetized (100mg/kg Ketamine, 10mg/kg Xylazine i.p.) and instrumented to record diaphragmatic, abdominal and neck EMG, ECG, and EEG. Fourteen days post-implantation a second surgery was performed to stereotaxically inject unilaterally into the preBötC, the toxin saporin conjugated to substance P (SP-SAP), which selectively ablates NK1R neurons. Rats were kept on a 12-hour light/dark cycle and monitored within a plethysmograph from day 1 post-injection until they were sacrificed (days 21-50). Post-unilateral SP-SAP injection, respiratory pattern remained normal during wakefulness and sleep until ~day 9. At this point, respiratory pattern during sleep, particularly REM sleep, became increasingly disordered. The disruptions in breathing pattern were characterised by an increase in frequency of apneas and hypopnea (~4-6/hour of sleep vs <3 pre-injection control; p<0.05). Rats that were monitored up to 50 days post-SP-SAP injection continued to have SDB, while breathing during resting wakefulness remained stable. Unlike bilateral SP-SAP injected rats, an ataxic breathing pattern did not develop during wakefulness(1,2). Histological analysis of the ventrolateral medulla confirmed that only NKIR neurons within the preBötC on one side of the medulla were ablated (~300 preBötC NK1R neurons/side in the adult rat). Unilateral SP-SAP injection results in SDB, while breathing during resting wakefulness appears normal. Over time, breathing during sleep does not improve. We have previously proposed that in the elderly and in individuals who suffer from various neurodegenerative diseases, gradual loss of preBötC NK1R neurons may explain why SDB is highly prevalent in these populations. We further speculate that SDB can go unnoticed because breathing during wakefulness is relatively stable.
Related Products: SP-SAP (Cat. #IT-07)
Effect of running on neurogenesis in cholinergic lesioned mice
Ho N, Han S, Dawe GS (2006) Effect of running on neurogenesis in cholinergic lesioned mice. Neuroscience 2006 Abstracts 318.5. Society for Neuroscience, Atlanta, GA.
Summary: Neurogenesis occurs mainly in two regions of the adult rodent brain, the dentate gyrus of the hippocampus and the subventricular zone. There are many factors which regulate neurogenesis, but voluntary exercise has consistently been shown to enhance neurogenesis. Exercise has been reported to specifically stimulate neural cell proliferation in the hippocampus but not the olfactory bulb. One of the major sources of afferents to the hippocampus are the septohippocampal projections, in which axons from the medial septum and diagonal band of Broca (MSDB) project to the hippocampus. Major components of the septohippocampal pathway that act as ‘pacemakers’ for hippocampal theta rhythm, which increases in conjunction with the voluntary running, are the cholinergic and GABAergic projections rising from cells in the MSDB. This present study investigates the effect of a partial cholinergic lesion in the basal forebrain and MSDB of mice, a partial model of the neurodegeneration that occurs in Alzheimer’s disease, on neural cell proliferation and neurogenesis. Murine p75-SAP, a conjugate of a p75 antibody that targets selectively cholinergic cells and cytotoxic saporin, was injected into the ventricles of female adult Swiss mice. After recovery from surgery mice were then administered bromodeoxyuridine (BrdU). BrdU immunopositive cells were quantified 24 hours and 4 weeks to assess for neural cell proliferation and survival of newly generated cells. Partial cholinergic denervation led to a decrease in the survival of new born cells in the dentate gyrus. We compared the effects of voluntary running for a period of 12 days in non-lesioned and lesioned mice under similar experimental conditions. Running resulted in an increase in neural cell proliferation for both the non-lesioned and lesioned groups. Running led to a marked increase in cell proliferation in lesioned mice compared to the controls, and also enhanced neurogenesis, as determined by the colocalization of BrdU and the neuronal nuclei marker NeuN in cells within the dentate gyrus. The present study suggests that voluntary running may have a positive effect on neurogenesis in neurodegenerative models in rodents. Further work needs to be done to elucidate the underlying mechanisms of exercise-induced neurogenesis.
Related Products: mu p75-SAP (Cat. #IT-16)
Lesions of neurokinin-1 receptor immunoreactive (NK1R-ir) neurons in the ventral medulla decrease chemoreception and ventilation
Li A, Nattie EE (2006) Lesions of neurokinin-1 receptor immunoreactive (NK1R-ir) neurons in the ventral medulla decrease chemoreception and ventilation. Neuroscience 2006 Abstracts 455.5. Society for Neuroscience, Atlanta, GA.
Summary: We injected SSP-saporin, a toxin specific for NK1R-ir neurons, into the cisterna magna in order to lesion a wide aspect of the ventral medulla. NK1R-ir loss after 21 days was 79% in the retrotrapezoid nucleus, 65% in the A5 region, 38% in the medullary raphe and 49% in the pre-Botzinger complex. This resulted in a large reduction in the ventilatory response to 7% CO2 during wakefulness (-61%) and NREM sleep (-57%). The response to 12% O2 was reduced by 35-40% at 8 days but partially recovered by 22 days. We did not measure chemoreception in REM sleep. Ventilation in wakefulness, NREM and REM sleep measured over 4 hrs of air breathing decreased by 12-13% at 21 days compared to baseline values (P< 0.005, one-way repeated measures ANOVA; P< 0.05 post hoc comparison, Dunnett’s test). In REM sleep compared to awake and NREM sleep, the rats breathed with a higher frequency and smaller tidal volume, a pattern that was unaffected by the lesion, and with a greater coefficient of variability, which was further increased by the lesion (71 +/- 4 % vs 34 +/- 6 %). We did not observe any severe rhythm disturbances. We attribute the effect of these lesions, which are greatest in the ventral medullary regions including the retrotrapezoid nucleus and the medullary raphe, to loss of tonic chemoreceptor input. This input seems to have equal weight in wakefulness and in NREM and REM sleep and it seems to minimize the variability of frequency observed in REM sleep.
Related Products: SSP-SAP (Cat. #IT-11)
Catecholaminergic afferents are required for hypothalamic parvicellular paraventricular neurons to transduce signals associated with hypoglycemia into p44/42 MAP kinase phosphorylation events
Rapp KL, Khan AM, Watts AG (2006) Catecholaminergic afferents are required for hypothalamic parvicellular paraventricular neurons to transduce signals associated with hypoglycemia into p44/42 MAP kinase phosphorylation events. Neuroscience 2006 Abstracts 355.9. Society for Neuroscience, Atlanta, GA.
Summary: Hypoglycemia activates CRH neuroendocrine neurons in the hypothalamic paraventricular nucleus (PVH), thereby rapidly elevating plasma ACTH and corticosterone concentrations. Hindbrain-originating catecholaminergic (CA) neurons projecting to the PVH facilitate ACTH release after insulin-induced hypoglycemia; however, the intracellular signaling mechanisms that CRH neurons use to transduce CA signals into secretogogue function are unknown. We have previously shown that p44 and/or p42 MAP kinases (ERK1/2) are phosphorylated in CRH neurons after 2-deoxy-D-glucose challenge (Endoc. v145:351, 2004). We now ask: Are hindbrain-originating CA projections to the PVH essential for ERK1/2 phosphorylation in response to insulin-induced hypoglycemia? Male Sprague-Dawley rats received acute bilateral PVH microinjections of either saporin toxin conjugated (DSAP) to an antiserum against dopamine beta hydroxylase (DBH) or conjugated to a non-targeted mouse IgG (control mIgG-SAP), were fitted with jugular catheters, and allowed to recover. On the day of testing, plasma glucose was measured just before the onset of hypoglycemia (induced via insulin bolus [2U/kg, i.v.]) and then 10 and 30 min thereafter. Rats were then anesthetized and transcardially perfused. Brain tissue processed for dual immunofluorescence using antibodies raised against DBH and phospho-ERK1/2 was visualized by confocal microscopy. Baseline plasma glucose levels did not differ significantly between groups (5.66 ± 0.26 mM), but were significantly reduced in each group when compared to baseline after 10 (1.48 ± 0.12 mM) and 30 (1.92 ± 0.12 mM) minutes. DSAP rats displayed marked loss of DBH immunostaining in the PVH relative to controls, with concomitant loss of phospho-ERK1/2 immunostaining within the parvicellular PVH. Further analysis was performed to address the effect of DSAP on DBH staining and ERK1/2 recruitment in the hindbrain and arcuate nucleus. Our results confirm that phosphorylation of ERK1/2 in parvicellular PVH after insulin-induced hypoglycemia requires intact CA afferent innervation. These data contribute to our understanding of how intracellular signaling is regulated in parvicellular PVH neurons. They also underscore an emerging importance of CA afferents for mediating neuroendocrine responses to systemic alterations in glucose.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Adenosine and sleep debt in the basal forebrain
Shiromani PJ, Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Hof PR (2006) Adenosine and sleep debt in the basal forebrain. Neuroscience 2006 Abstracts 458.13. Society for Neuroscience, Atlanta, GA.
Summary: The waxing and waning of the sleep drive is hypothesized to be regulated by endogenous sleep factors acting on specific neurons in the brain. One such factor, adenosine (AD), accumulates during wake and begins to inhibit neural activity in wake-promoting brain regions. The current version of the AD hypothesis (Strecker et al., Sleep, 2006) postulates that the adenosine A1 receptor activation on cholinergic neurons in the basal forebrain (BF) is key to sleep debt. Here we directly test this by administering 192-IgG-saporin to lesion the BF cholinergic neurons and then measuring AD levels in the BF via microdialysis. 46 Sprague-Dawley rats were administered either saline (n=21) or 192-IgG-SAP (n=25) (under anesthesia) and two weeks later when it is known that the cholinergic neurons have died, experiments were started. Rats were maintained on 12:12 light-dark schedule and given food and water ad-libitum. In rats with 95% lesion of the BF cholinergic neurons (n=7) AD levels in the BF did not increase with 6 h of prolonged waking but consistent with established findings it increased in non-lesioned rats (n=6). The lesioned rats had intact sleep drive after 6 and 12 h of prolonged waking, including a robust increase in delta power, indicating that the AD accumulation in the BF is not necessary for sleep drive. Next we determined that in the absence of the BF cholinergic neurons the selective adenosine A1 receptor agonist, CHA, administered to the BF continued to be effective in inducing sleep in a concentration-dependent manner, indicating that the BF cholinergic neurons are not essential to sleep induction. Basal sleep-wake levels and the amplitude of the diurnal rhythm of sleep-wake were not different between lesioned and non-lesioned rats. Thus, the hypothesis that basal forebrain cholinergic neurons are central to the AD regulation of sleep debt is rejected since neither the activity of the BF cholinergic neurons nor the accumulation of AD in the BF during wake is necessary for accumulating sleep debt.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Glucoprivation enhances dopamine-beta-hydroxylase gene expression in hindbrain catecholamine cells
Li A, Ritter S (2006) Glucoprivation enhances dopamine-beta-hydroxylase gene expression in hindbrain catecholamine cells. Neuroscience 2006 Abstracts 359.12. Society for Neuroscience, Atlanta, GA.
Summary: Hindbrain catecholaminergic neurons are key participants in systemic glucoregulation. Using in situ hybridization, we investigated the effects of glucoprivation on gene expression of dopamine-beta-hydroxylase (DBH), a key enzyme for catecholamines synthesis, to further define the catecholamine subpopulation activated by glucoprivation. Glucoprivation induced by systemic injection of the glycolytic inhibitor, 2-deoxy-D-glucose (2DG, 250 mg/kg body weight) increased total DBH mRNA expression in caudal ventrolateral medullary cell groups (namely, A1, the A1/C1 overlap, and middle C1) from 6 – 49 times control levels. In retrofacial C1, A5 and A7 no enhancement was observed. In the dorsomedial medulla, DBH mRNA hybridization signal was modestly increased (tripled) in cell group A2, but not in the area postrema. Furthermore, a previous hypothalamic microinjection of the retrogradely transported immunotoxin, anti-DBH-saporin, profoundly reduced DBH-positive cells in hindbrain, and abolished the 2DG-stimulated increases of DBH mRNA expression in the caudal ventrolateral medulla and A2 regions. The strong glucoprivation-induced enhancement of DBH gene expression in particular cell populations is consistent with the demonstrated importance of catecholaminergic neurons for glucoregulation and provides further evidence for functional specialization within the catecholamine cell population.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Hypocretin-1 stimulates wake and decreases sleep in the basal forebrain of rats with 192-IgG-sap induced lesion of the cholinergic neurons
Blanco-Centurion CA, Shiromani PJ (2006) Hypocretin-1 stimulates wake and decreases sleep in the basal forebrain of rats with 192-IgG-sap induced lesion of the cholinergic neurons. Neuroscience 2006 Abstracts 458.7. Society for Neuroscience, Atlanta, GA.
Summary: Hypocretin (orexin) containing neurons are located in the lateral hypothalamus (LH) from where they project to major arousal centers in the brain including the basal forebrain (BF). Waking, in part, may be driven by the action of HCRT on BF neurons. However, the BF contains various phenotypes of neurons and to test whether HCRT stimulates wake via the cholinergic neurons we utilize 192-IgG-saporin (192-IgG-SAP) to lesion the BF cholinergic neurons and then determine the potency of HCRT-1 in stimulating wake. Sprague-Dawley rats were administered (under anesthesia) saline (n=5) or 192IgG-SAP (4-6 ug/6ul, n=7). Three weeks later microinjections of aCSF or HCRT (0.06, 0.125, 0.25 nmol/250ul) were administered to the BF via a cannula in a random order. Sleep was recorded for 6h. In lesioned rats 95% of the BF cholinergic neurons were destroyed. However, in these rats, HCRT-1 in a dose-dependent manner significantly increased the time to onset of NREM and REM sleep and this was not different compared to non-lesioned rats. Percent wake was also not different compared to non-lesioned rats. Four hours after microinjection, wake-sleep levels were back to normal. Two studies (Espana et al., 2001) (Thakkar et al., 2001) have infused HCRT-1 into the BF and monitored changes in sleep-wake. However, because the BF contains a heterogenous population of neurons, HCRT-1 is likely to act on all of the BF neurons that contain the HCRT receptor. Here, we found that in the absence of the BF cholinergic neurons HCRT-1 increased wake and decreased sleep to the same degree as in non-lesioned rats, suggesting that non-cholinergic BF neurons are able to mediate unabated HCRT’s arousal signal.
Related Products: 192-IgG-SAP (Cat. #IT-01)
The tuberomammillary nucleus is a key component of the arousal system for the appetitive phase of feeding
Farias P, Valdes J, Riveros M, Torrealba F (2006) The tuberomammillary nucleus is a key component of the arousal system for the appetitive phase of feeding. Neuroscience 2006 Abstracts 361.24. Society for Neuroscience, Atlanta, GA.
Summary: The histaminergic neurons from the tuberomammilary nucleus (TMN) are important in maintaining a high level of arousal or increased sensory alertness. We have seen TMN activation (assessed by Fos-ir) in three different motivated behaviors: feeding, drinking and sexual. The aim of this work is to prove that TMN neurons are essential to promote the arousal during the appetitive phase of feeding. We evaluated the effect of TMN lesion performed with the neurotoxin-saporin coupled to orexin-B on locomotor activity and on thermal responses during food presentation to hungry rats as well as changes in Fos-ir of arousal nuclei and subcortical regions involved in thermal responses. Rats were implanted with telemetric transponders to measure locomotor activity and body core temperature. The brains were processed for Fos-ir, and counterstained with appropriate antibodies to identify ascending arousal system (AAS) nuclei. Histaminergic neurons in the TMN were identified by adenosine deaminase (ADA)-ir. The lesions significantly decreased the number of ADA ir/mm2. The larger lesion (<54% surviving neurons) produced a significant decreased in locomotion and temperature responses to food enticing, compared to intact rats or rats with smaller lesion. Larger lesion abolished the increase in Fos-ir of the AAS nuclei (except the locus coeruleus), and the increase in Fos-ir in thermoregulatory nuclei observed in intact rats. The activation of the orexin neurons of the lateral hypothalamic area and the increase in locomotor activity during food presentation were correlated with the activation of the dorsal TMN. The increased Fos-ir in locus coeruleus and dorsal raphe, and the increase in body core temperature were correlated with the activation of the ventral TMN. In conclusion the TMN neurons seems to act as a “master switch” since they are necessary to initiate the increased arousal that characterizes motivated behaviors, and they likely engage other arousal nuclei as well as thermoregulatory nuclei during the appetitive phase of feeding.
Related Products: Orexin-B-SAP (Cat. #IT-20)
Prefrontal cholinergic modulation of attentional performance-associated increases in posterior parietal acetylcholine release
Kozak R, Brown HD, Bruno JP, Sarter M (2006) Prefrontal cholinergic modulation of attentional performance-associated increases in posterior parietal acetylcholine release. Neuroscience 2006 Abstracts 369.15. Society for Neuroscience, Atlanta, GA.
Summary: Increases in medial prefrontal cortex (mPFC) cholinergic activity were demonstrated to mediate attentional performance, particularly under conditions that require increases in attentional effort such as coping with the detrimental performance effects of distractors. Activation of the mPFC, in part as a result of cholinergic activity, is thought to orchestrate top-down effects for optimization of input processing elsewhere in the cortex. The cholinergic inputs to posterior cortical regions have been conceptualized as a branch of the PFC efferent circuitry mediating such top-down effects. Therefore, cholinergic inputs to the mPFC are expected to modulate performance-associated activation of cholinergic projections to the posterior parietal cortex (PPC). Furthermore, the mPFC modulatory influence should be particularly robust in response to performance challenges. This hypothesis was tested by assessing attentional performance-associated ACh release in the PPC in rats after removal of cholinergic inputs to the mPFC. Attentional task-performing animals were equipped with a guide cannula for insertion of a microdialysis probe into the PPC. Cholinergic projections to the mPFC and medial cingulate region were lesioned bilaterally by infusing 192-IgG saporin into the mPFC. Standard task performance of intact rats increased PPC ACh release by ~100% (over baseline).While lesioned animals’ standard task performance was mildly but significantly impaired, performance-associated increases in PPC ACh release in lesioned animals were higher than those observed in intact rats (150-200% over baseline). Presentation of the distractor impaired the performance of intact animals; the lesion exaggerated the detrimental effects of the distractor. In both intact and lesion animals, distractor performance-associated increases in PPC ACh release were higher than the increases observed during standard task performance. However, while peak ACh levels were observed immediately after distractor onset in intact rats, PPC ACh release in lesioned animals increased toward the end of the session, peaking 16 min after distractor termination. These data support the hypotheses that mPFC cholinergic inputs contribute to the regulation of PPC cholinergic activity, particularly following performance challenges.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Nucleus basalis magnocellularis cholinergic lesions attenuate approach and approach-avoidance conflict
Norman GJ, Knox DK, Brothers H, Berntson GG (2006) Nucleus basalis magnocellularis cholinergic lesions attenuate approach and approach-avoidance conflict. Neuroscience 2006 Abstracts 369.17. Society for Neuroscience, Atlanta, GA.
Summary: Approach-avoidance conflict is a construct that underlies many behavioral tests that model anxiety. These tests include the elevated plus maze, shock-probe avoidance, and operant suppression. Previous reports have demonstrated that nucleus basalis magnocellularis (NBM) cholinergic lesions attenuate operant suppression induced by aversive stimuli. Furthermore, NBM cholinergic lesions attenuate avoidance behavior induced by predator odor. This suggests that NBM cholinergic lesions impact avoidance behavior during approach-avoidance conflict but the effect of NBM cholinergic lesions on approach behavior has not been evaluated extensively. In this study we attempted to separately evaluate the effect of NBM cholinergic lesions on approach and approach-avoidance conflict. NBM cholinergic lesions were induced using the selective cholinergic immunotoxin 192 IgG saporin. Time required to start consumption of a food reward was used as an index of approach. Time required to start consumption of a food reward in the presence of predator odor (trimethylthiazoline) was used as an index of approach-avoidance conflict. NBM cholinergic lesions attenuated the time required to consume a food reward in the presence and absence of trimethylthiazoline. The methods in the study describe a novel way of indexing approach-avoidance conflict. Furthermore, the results suggest that NBM cholinergic neurons may separately modulate neurobehavioral systems that mediate approach and avoidance.
Related Products: 192-IgG-SAP (Cat. #IT-01)