saporin

166 entries

Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons.

Li A, Wang Q, Davis H, Wang R, Ritter S (2015) Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 309:R358-367. doi: 10.1152/ajpregu.00065.2015

Summary: Although administration of orexin, norepinephrine, and epinephrine all induce significantly increased food intake, the potential interaction between the networks affected by these molecules has not been studied. In this work, the authors investigate the hypothesis that orexin neurons may stimulate feeding through the activation of catecholamine neurons. Rats received 82-ng injections of Anti-DBH-SAP (Cat. #IT-03) into the hypothalamus in order to lesion hypothalamically-projecting catecholamine neurons. Saporin (Cat. #PR-01) was used as a control. While the normal response to orexin A is increased food intake, lesioned animals did not display this response, indicating that catecholamine neurons are necessary for orexin modulation of food intake.

Related Products: Anti-DBH-SAP (Cat. #IT-03), Saporin (Cat. #PR-01)

Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

Sorge R, Mapplebeck J, Rosen S, Beggs S, Taves S, Alexander J, Martin L, Austin J, Sotocinal S, Chen D, Yang M, Shi X, Huang H, Pillon N, Bilan P, Tu Y, Klip A, Ji R, Zhang J, Salter M, Mogil J (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18:1081-1083. doi: 10.1038/nn.4053

Summary: A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, the authors found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research. Mac-1-SAP mouse/human toxin (Cat. #IT-06, 15 μg in 8.8 μl) and Saporin control (Cat. #PR-01, 8.8 μg in 8.8 μl) were administered via i.t. injection. The topic of immune system involvement in chronic pain pathophysiology is one of the most active in the pain field; that this sex difference has not been observed until now is very surprising indeed. An important implication of the current findings is that distinct strategies targeting neuroimmune signaling might be required for the treatment of chronic pain in men versus women.

Related Products: Mac-1-SAP mouse/human (Cat. #IT-06), Saporin (Cat. #PR-01)

Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization – A minimally invasive cancer stem cell-targeting strategy.

Bostad M, Olsen C, Peng Q, Berg K, Høgset A, Selbo P (2015) Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization – A minimally invasive cancer stem cell-targeting strategy. J Control Release 206:37-48. doi: 10.1016/j.jconrel.2015.03.008

Summary: Previously the authors demonstrated the use of photochemical internalization of a custom conjugate consisting of a CD133 antibody coupled to saporin (ATS Custom conjugation). Several cancer cell lines were plated, and incubated in the presence of a photosensitizer with either CD133-SAP at 8.6 pM or Saporin (Cat. #PR-01) at 24 pM. The different concentrations equalized the number of saporin molecules in each sample. A light source was used to initiate the internalization of the molecules. The results indicate that this is a viable strategy for the targeted treatment of cancer stem cells.

Related Products: Anti-CD133-SAP (Cat. #IT-82), Saporin (Cat. #PR-01), Custom Conjugates

Hindbrain catecholamine neurons activate orexin neurons during systemic glucoprivation in male rats.

Li A, Wang Q, Elsarelli M, Brown R, Ritter S (2015) Hindbrain catecholamine neurons activate orexin neurons during systemic glucoprivation in male rats. Endocrinology 156:2807-2820. doi: 10.1210/en.2015-1138

Summary: Norepinephrine and epinephrine-secreting catecholamine neurons are strong stimulators of food intake. The authors investigated the interaction between these catecholamine neurons and orexin neurons in the perifornical lateral hypothalamus (PeFLH), which are known to be involved with the stimulation of food intake, increased arousal, and behavioral activation. Rats received 82-ng injections of Anti-DBH-SAP (Cat. #IT-03) into the PeFLH terminal field in order to lesion catecholamine neurons. Saporin (Cat. #PR-01) was used as a control. Assessment of food intake in response to 2-deoxy-D-glucose, as well as selective catecholamine activation, indicated that orexin neuron activation may be involved in glucoprivic appetite responses.

Related Products: Anti-DBH-SAP (Cat. #IT-03), Saporin (Cat. #PR-01)

Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

Navratilova E, Xie J, Meske D, Qu C, Morimura K, Okun A, Arakawa N, Ossipov M, Fields H, Porreca F (2015) Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 35:7264-7271. doi: 10.1523/JNEUROSCI.3862-14.2015

Summary: There are a number of neuronal circuits involved in the processing of pain, including those that control somatosensory, affective, and cognitive aspects of pain perception. Opioid signaling in the anterior cingulate cortex (ACC) plays a part in pain modulation – this area has also been implicated in the encoding of pain aversiveness. In order to examine the neuronal mechanisms of pain relief and the following reward, the authors of this paper administered 48 ng of Dermorphin-SAP (Cat. #IT-12) into the rostral ACC of rats. Saporin (Cat. #PR-01) was used as a control. The results illuminate the opioid pathway during pain treatment, and the dependence of nucleus accumbens dopaminergic transmission on upstream ACC opioid circuits during pain processing.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12), Saporin (Cat. #PR-01)

Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections.

Nichols N, Vinit S, Bauernschmidt L, Mitchell G (2015) Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections. Exp Neurol 267:18-29. doi: 10.1016/j.expneurol.2014.11.011

Summary: Amyotrophic lateral sclerosis (ALS) ultimately causes death from ventilator failure. Genetic models of ALS suffer from high variability of the rate, timing, and extent of respiratory motor neuron death. The authors created a novel model of induced respiratory motor neuron death using CTB-SAP (Cat. #IT-14). Rats received 25 μg or 50 μg intrapleural injections of CTB-SAP; Saporin (Cat. #PR-01) was used as a control. After 7 days, motor neuron survival approximated what is seen in end-stage ALS rats, while there was minimal cell death in other brainstem or spinal cord regions. CTB-SAP also caused microglial activation, decreased breathing during chemoreceptor stimulation, and diminished phrenic motor output in anesthetized rats – all hallmarks of ALS.

Related Products: CTB-SAP (Cat. #IT-14), Saporin (Cat. #PR-01)

TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity.

Ono K, Ye Y, Viet C, Dang D, Schmidt B (2015) TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity. J Neurophysiol 113:3345-3355. doi: 10.1152/jn.00973.2014

Summary: In order to determine whether IB4-positive trigeminal sensory neurons affect pain sensitivity, the authors administered 2 μg of rIB4-SAP (Cat. #IT-10) to the right infraorbital foramen. Saporin (Cat. #PR-01) was used as a control.

Related Products: IB4-SAP (Cat. #IT-10), Saporin (Cat. #PR-01)

Role of adrenomedullin in the cerebrospinal fluid-contacting nucleus in the modulation of immobilization stress.

Wu Y, Song S, Liu H, Xing D, Wang X, Fei Y, Li G, Zhang C, Li Y, Zhang L (2015) Role of adrenomedullin in the cerebrospinal fluid-contacting nucleus in the modulation of immobilization stress. Neuropeptides 51:43-54. doi: 10.1016/j.npep.2015.03.007

Summary: The CSF-contacting nucleus (CSF-CN) is a brain structure containing neurons that can bidirectionally transmit signals between the brain parenchyma and the CSF. In order to better understand what regulatory peptides modulate this organ, the authors eliminated the CSF-CN of rats with a 500-ng icv injection of CTB-SAP (Cat. #IT-14). Saporin (Cat. #PR-01) was used as a control. The elimination of the CSF-CN worsened the response to chronic immobilization stress; with other data this information suggests that the CSF-CN uses adrenomedullin as a stress-related peptide.

Related Products: CTB-SAP (Cat. #IT-14), Saporin (Cat. #PR-01)

Exploratory behavior and recognition memory in medial septal electrolytic, neuro- and immunotoxic lesioned rats.

Dashniani M, Burjanadze M, Naneishvili T, Chkhikvishvili N, Beselia G, Kruashvili L, Pochkhidze N, Chighladze M (2015) Exploratory behavior and recognition memory in medial septal electrolytic, neuro- and immunotoxic lesioned rats. Physiol Res 64:755-767. doi: 10.33549/physiolres.932809

Summary: To investigate recognition memory that incorporates a spatial or temporal component, the authors lesioned the medial septum of rats using several techniques. For specific lesioning of cholinergic neurons rats received bilateral injections of 192-IgG-SAP (Cat. #IT-01, 500 ng total) into the medial septum. Saporin (Cat. #PR-01) was used as a control. While electrolytic lesions produced disruptions of spatial recognition memory, immunotoxin lesions did not, indicating that the cholinergic neurons of the septohippocampal pathway are not essential to processing this type of learning.

Related Products: 192-IgG-SAP (Cat. #IT-01), Saporin (Cat. #PR-01)

Selective lesion of GABA-ergic neurons in the medial septum by GAT1-saporin impairs spatial learning in a water-maze.

Burjanadze M, Mataradze S, Rusadze K, Chkhikvishvili N, Dashniani M (2015) Selective lesion of GABA-ergic neurons in the medial septum by GAT1-saporin impairs spatial learning in a water-maze. Georgian Med News 240:59-64.

Summary: The authors investigated the role of GABAergic neurons in the medial septum on spatial learning using a Morris water maze test. Rats received bilateral injections totaling 162 ng of GAT-1-SAP (Cat. #IT-32) into the medial septum. Saporin (Cat. #PR-01) was used as a control. The lesioned animals displayed significant deficits during the water maze task, indicating that GABAergic neurons in the medial septum are intrinsic to organization of spatial map-driven behavior.

Related Products: GAT1-SAP (Cat. #IT-32), Saporin (Cat. #PR-01)

Shopping Cart
Scroll to Top