saporin

164 entries

The promising guide to LC–MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses.

Singh SA, Vellapandian C (2023) The promising guide to LC–MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses. Futur J Pharm Sci 9:33. doi: 10.1186/s43094-023-00478-0

Objective: Identify and analyze the extract of the plant Luffa cylindrica for bioactive and biochemical properties, particularly as it relates to bioactivity in neurological diseases.

Summary: Luffa cylindrica contains a total of 80 compounds that were identified in the ethanolic extract from LC–MS analysis. The bioactive compounds were screened for activity in receptors responsible for causing oxidative stress-associated Alzheimer’s disease. Perlolyrine was chosen to perform in-silico docking. An in vitro activity of cholinesterase showed highest inhibition at 500 μg/ml. In-silico docking of perlolyrine showed better binding affinity and score. Results revealed that out of 10 docked receptors, amyloid beta showed the highest binding affinity with an energy of −46.1 kcal/mol showing promising drug for Alzheimer’s disease. The study reports the presence of a promising, bioactive compound (perlolyrine) with promisng applications in vivo, oxidative stress-related Alzheimer’s disease.

Related Products: Saporin (Cat. #PR-01)

See Also:

Which type of RIP is saporin?

Q: I read on your website that, “There are two types of RIPs: type I, which are much less cytotoxic due to the lack of the B chain and type II, which are distinguished from type I RIPs by the presence of the B chain and their ability to enter cells on their own.”

In the IT-27 Streptavidin-ZAP product, which type of saporin is there? Is it both type I and type II because the saporin is purified from the plant, or is it one specific type only in the product.

A: All saporin molecules are Type I ribosome-inactivating proteins. We only use saporin. An example of a Type II RIP is ricin, which can enter a cell on its own and has been used throughout history as a method of assassination.

Streptavidin-ZAP is streptavidin attached to saporin. On its own it has no way to get inside a cell. By mixing Streptavidin-ZAP with a biotinylated molecule that is recognized on the cell surface, the resulting conjugate is able to bind and internalize saporin into a cell. Once inside saporin inactivates the ribosomes which causes cell death.

From immunotoxins to suicide toxin delivery approaches: Is there a clinical opportunity? 

Ardini M, Vago R, Fabbrini MS, Ippoliti R (2022) From immunotoxins to suicide toxin delivery approaches: Is there a clinical opportunity?. Toxins (Basel) 14(9):579. doi: 10.3390/toxins14090579 PMID: 36136517

Objective: To give an overview describing some of the bacterial and plant enzymes studied so far for their delivery and controlled expression in tumor models.

Summary: “Suicide gene” therapy (SGT), consists of the selective delivery of genes coding for toxic proteins, into target cancer cells. This new and promising approach may overcome some of the issues related to the use of chemical agents (chemotherapy) such as as specificity, high dosages with accompanying side effects, and chemoresistance induction.

From immunotoxins to suicide toxin delivery approaches: Is there a clinical opportunity?

Ardini M, Vago R, Fabbrini MS, Ippoliti R (2022) From immunotoxins to suicide toxin delivery approaches: Is there a clinical opportunity?. Toxins (Basel) 14(9):579. doi: 10.3390/toxins14090579 PMID: 36136517

Objective: To give an overview describing some of the bacterial and plant enzymes studied so far for their delivery and controlled expression in tumor models.

Summary: “Suicide gene” therapy (SGT), consists of the selective delivery of genes coding for toxic proteins, into target cancer cells. This new and promising approach may overcome some of the issues related to the use of chemical agents (chemotherapy) such as as specificity, high dosages with accompanying side effects, and chemoresistance induction.

Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery

Li Y, Champion JA (2022) Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 189:114462. doi: 10.1016/j.addr.2022.114462 PMID: 35934126

Objective: Review recent advances in protein nano-carriers that are from ground-up design recombinant proteins.

Summary: Nanocarriers with a size range of 10-200 nm have emerged as platforms with significant potential for efficient drug delivery via a wide variety of administration routes. To develop nanocarriers for drug delivery, the following functionalities should be achieved. Nanocarriers encapsulate drugs with high loading efficiency and maintain stability in vivo to protect drugs from degradation and prolonged in vivo circulation in blood or residence time in other tissues help improve the fraction of drug-loaded nanocarriers that reach the target site or cells. The Design functionalization, and therapeutic application of protein nanocarriers will be reviewed.

Usage: Saporin is used as the molecular cargo for Protein-Glycan Nanocarriers.

Related Products: Saporin (Cat. #PR-01)

RIPpore: A novel host-derived method for the identification of ricin intoxication through oxford nanopore direct RNA sequencing

Ryan Y, Harrison A, Trivett H, Hartley C, David J, Clark GC, Hiscox JA (2022) RIPpore: A novel host-derived method for the identification of ricin intoxication through oxford nanopore direct RNA sequencing. Toxins (Basel) 14(7):470. doi: 10.3390/toxins14070470

Objective: The Depurination event could be detected using Oxford Nanopore Technologies (ONT) direct RNA sequencing, detecting a change in charge in the ricin loop.

Summary: Collectively, this work highlights the potential for ONT and direct RNA sequencing to detect and quantify depurination events caused by ribosome-inactivating proteins such as ricin.

Usage: Saporin was added as described by Rust et al., at 100 nM [22] for 24 h.

Related Products: Saporin (Cat. #PR-01)

See Also:

Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs.

Li Y, Ye Z, Yang H, Xu Q (2022) Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B 12(6):2624-2639. doi: 10.1016/j.apsb.2022.04.013

Objective: To highlight the recent progress in combinatorial lipid nanoparticles (LNPs) with novel structures and properties for the delivery of small- and macromolecular therapeutics.

Summary: The administration of protein/LNP negatively impacted reproduction in rats, including sperm production, estrous cyclicity and testicular and ovarian morphology, without causing any significant side effects. This non-surgical approach can be developed into a safe and convenient strategy for controlling the overproduction of pet and wildlife.

Usage: Intravenous administration of saporin loaded LNPs

Related Products: Saporin (Cat. #PR-01)

Maintenance mechanism of nociplastic pain in males

McDonough KE (2022) Maintenance mechanism of nociplastic pain in males. University of Texas Medical Branch Thesis.

Objective: The objective of this dissertation is to elucidate the sex-specific mechanisms underlying the transition to and maintenance of a nociplastic pain state using animal models.

Summary: This PhD dissertation investigates the mechanisms underlying the transition from acute to chronic nociplastic pain using murine models. The study finds that in males, spinal microglial activation driven by GABAergic disinhibition allows normally innocuous stimulation to induce a transition to nociplastic pain maintained by spinal microglia and proinflammatory cytokines.

Usage: Intrathecal injection of Saporin or Mac-1-SAP at 8.85 μM.

Related Products: Mac-1-SAP mouse/human (Cat. #IT-06), Saporin (Cat. #PR-01)

Saporin as a commercial reagent: its uses and unexpected impacts in the biological sciences-tools from the plant kingdom

Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA (2022) Saporin as a commercial reagent: its uses and unexpected impacts in the biological sciences-tools from the plant kingdom. Toxins (Basel) 14(3):184. doi: 10.3390/toxins14030184

Read complete article.

Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats.

Xu L, Füredi N, Lutter C, Geenen B, Pétervári E, Balaskó M, Dénes Á, Kovács KJ, Gaszner B, Kozicz T (2022) Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats. Neuropharmacology 205:108898. doi: 10.1016/j.neuropharm.2021.108898

Objective: To show that leptin bound to neurons of the Edinger-Westphal nucleus (EWcp) stimulated STAT3 phosphorylation and increases urocortin 1 (Ucn1)-production in a time-dependent manner.

Summary: EWcp/LepRb/Ucn1 neurons respond to leptin signaling as well as control white adipose tissue size and fat metabolism without altering food intake.

Usage: Ablation of EWcp leptin receptor (LepRb) positive neurons with leptin-saporin. Either unconjugated saporin (53 ng in 80 nl MQ, or Leptin-SAP (90 ng in 80 nl MQ, was injected into the rat midbrain.

Related Products: Leptin-SAP (Cat. #IT-47), Saporin (Cat. #PR-01)

Shopping Cart
Scroll to Top