- Home
- Knowledge Base
- References
References
Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat
Walker JR, Ong A, Detloff MR (2019) Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat. Neuroscience 2019 Abstracts 572.09. Society for Neuroscience, Chicago, IL.
Summary: Individuals with spinal cord injury (SCI) suffer a loss of motor and sensory function. The current standard of care to recover fine motor control is rehabilitation focused on a combination of range of motion, aerobic, and strength training (ST). However, limited research has been conducted to determine the role of nociceptive afferent inputs from muscle on spinal plasticity and/or recovery of function. Using a rodent model of SCI strength training rehabilitation, we determined that motor training not only improves forelimb strength and fine motor function but also can modulate the development of neuropathic pain, suggesting that improvements in reaching and grasping may be due, in part, to plasticity of nociceptive afferents. To further explore this, Sprague-Dawley rats received injections of rIB4-conjugated saporin, mu p75-conjugated saporin or unconjugated (vehicle) into the cervical dorsal root ganglia unilaterally to eliminate non-peptidergic and peptidergic nociceptors. There is an uninjured cohort and a group with unilateral C5 SCI. Von Frey and Hargreaves’ tests were performed at baseline and several time points post-injection to assess the effcacy of the nociceptive elimination. Several measures of forelimb strength were recorded over time including the isometric pull task, a single pellet retrieval task and the Montoya staircase test. To confirm the depletion of peptidergic and non-peptidergic nociceptors following saporin injection and/or SCI, cervical DRGs and spinal cords were stained with antibodies against CGRP and isolectin-B4. An understanding of the role of nociceptors in spinal plasticity and functional motor and sensory recovery of SCI patients will guide future research and refine rehabilitation strategies to further improve their quality of life.
Related Products: IB4-SAP (Cat. #IT-10), mu p75-SAP (Cat. #IT-16)
Leptin receptor activity in the nucleus of the solitary tract increases forebrain leptin sensitivity
Harris RB (2019) Leptin receptor activity in the nucleus of the solitary tract increases forebrain leptin sensitivity. Neuroscience 2019 Abstracts 591.04. Society for Neuroscience, Chicago, IL.
Summary: We previously reported that fourth ventricle infusions of leptin that cause weight loss are associated with an increase in hypothalamic phosphorylation of signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor (ObRb) activation, implying an integrated response to central leptin. This study tested the impact of ObRb activity in the nucleus of the solitary tract (NTS) on sensitivity to leptin in the forebrain. Leptin-Saporin (Lep-Sap) injections were used to delete ObR- expressing neurons in the NTS of 300g male Sprague Dawley rats. Controls were injected with Blank-Saporin (Blk-Sap). Loss of NTS ObR was confirmed with RNAScope in situ hybridization and pSTAT3 response to peripheral leptin in representative Lep- Sap rats. Experimental rats were fitted with 3rd ventricle (3V) guide cannula 12 days after Lep-Sap or Blk-Sap injections. Nine days later cannula placement was tested with Angiotensin II and rats were adapted to calorimeter cages for 4 days. Lep-Sap had no effect on body weight. To test leptin responsiveness rats were food deprived for 5 hours and at 5 p.m. they received 3V injections of 0, 0.05, 0.1, 0.25 or 0.5 μg leptin. Food was returned at 6 p.m., the start of the dark period. Each rat received the injections in random order at 4 day intervals. At the end of the experiment NTS pSTAT3 was used to confirm effcacy of Lep-Sap injections. Seven Lep-Sap and 6 control Blk-Sap rats completed the experiment. There was a dose-dependent inhibition of food intake in Blk-Sap rats, but only 0.5 μg leptin inhibited intake of Lep-Sap rats. Intake was inhibited during the 24 hours following injection and was not compensated for so that cumulative intake was inhibited for 60 hours post-injection. Energy expenditure was not different between groups and respiratory exchange ratio tended to follow food intake. These data suggest that leptin- induced inhibition of food intake is mediated by an integrated network involving both the forebrain and hindbrain and that activation of NTS ObRb lowers the threshold for leptin responsiveness in the forebrain.
Related Products: Leptin-SAP (Cat. #IT-47)
Medial septum cholinergic signaling regulates gastrointestinal-derived vagus sensory nerve communication to the hippocampus
Suarez AN, Liu CM, Cortella AM, Noble EN, Kanoski SE (2019) Medial septum cholinergic signaling regulates gastrointestinal-derived vagus sensory nerve communication to the hippocampus. Neuroscience 2019 Abstracts 601.19. Society for Neuroscience, Chicago, IL.
Summary: The vagus nerve delivers bi-directional communication between feeding-relevant gastrointestinal (GI) signals and the brain. Vagal sensory-mediated GI satiation signals, including gastric distension and intra-gastric nutrient infusion, activate neurons in the hippocampus (HPC). Recent work from our lab revealed that selective GI-derived vagal sensory signaling is required for HPC-dependent episodic and visuospatial memory, effects accompanied by reduced dorsal HPC (dHPC) expression of neurotrophic and neurogenic markers. To investigate the neural pathways mediating gut regulation of hippocampal-dependent memory, here we investigate the hypothesis that GI-derived signals communicate to dHPC neurons via cholinergic input from the medial septum, a memory-promoting pathway that is vulnerable to disruption in various degenerative dementia diseases. To explore this putative gut-to-brain pathway, we administered 192IgG-saporin, a neurotoxin that selectively kills cholinergic neurons via apoptosis, in the medial septum to determine whether septal cholinergic neurons regulate vagally-mediated neuronal activation in dHPC. Results revealed that elimination of cholinergic neurons in the MS reduced peripherally-administered cholecystokinin (CCK)-induced c-Fos expression in the dHPC, suggesting that cholinergic inputs from the MS transmit GI-derived signaling to the dHPC. Consistent with this interpretation, dHPC protein expression of vesicular acetylcholine transporter (VAChT), which promotes memory function and acetylcholine release without disrupting other co- released molecules, was significantly reduced in rats with GI-specific vagal sensory ablation via nodose ganglion injections of CCK conjugated to saporin. Collectively these results suggest that GI-derived vagal sensory signaling infuences memory function via enhancement of MS cholinergic signaling to the dPHC.
Related Products: 192-IgG-SAP (Cat. #IT-01), CCK-SAP (Cat. #IT-31)
The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity.
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. (2019) The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci 42(11):807-824. doi: 10.1016/j.tins.2019.09.002
Summary: This review describes the neurons of the retrotrapezoid nucleus (RTN), their transcriptome, developmental lineage, and anatomical projections. The authors also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake.
Usage: Local injection of SSP-SAP to kill RTN neurons.
Related Products: SSP-SAP (Cat. #IT-11)
Cilostazol promotes angiogenesis and increases cell proliferation after myocardial ischemia–reperfusion injury through a camp-dependent mechanism.
Li J, Xiang X, Xu H, Shi Y (2019) Cilostazol promotes angiogenesis and increases cell proliferation after myocardial ischemia–reperfusion injury through a camp-dependent mechanism. Cardiovasc Eng Technol 10(4):638-647. doi: 10.1007/s13239-019-00435-0 PMID: 31625080
Usage: western
Related Products: Fibroblast Growth Factor Rabbit Polyclonal, mammalian (Cat. #AB-07)
RGS4 maintains chronic pain symptoms in rodent models.
Avrampou K, Pryce KD, Ramakrishnan A, Sakloth F, Gaspari S, Serafini RA, Mitsi V, Polizu C, Swartz C, Ligas B, Richards A, Shen L, Carr FB, Zachariou V (2019) RGS4 maintains chronic pain symptoms in rodent models. J Neurosci 39(42):8291-8304. doi: 10.1523/JNEUROSCI.3154-18.2019 PMID: 31308097
Usage: western
Related Products: Metabotropic Glutamate Receptor 2 (mGluR2) Mouse Monoclonal (Cat. #AB-N32)
Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071
Kucinski A, Phillips KB, Koshy Cherian A, Sarter M (2020) Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Psychopharmacology (Berl) 237(1):137-153. doi: 10.1007/s00213-019-05354-5 PMID: 31620809
Related Products: 192-IgG-SAP (Cat. #IT-01)
Spinal cord projection neurons: A superficial, and also deep, analysis.
Wercberger R, Basbaum AI (2019) Spinal cord projection neurons: A superficial, and also deep, analysis. Curr Opin Physiol 11:109-115. doi: 10.1016/j.cophys.2019.10.002
Summary: Modern approaches to map complex neural circuits require knowledge of the molecular language that defines cell type specificity. However, with few exceptions, NK1R remains the marker consistently used to define projection neurons and even to interrogate their contribution to pain and itch (Mantyh et al.) The first of two studies demonstrating that SP-SAP-mediated ablation of dorsal horn NK1R-expressing neurons reduces injury-induced hyperalgesia. (Carstens et al.) In this paper SP-SAP-mediated ablation of dorsal horn NK1R-expressing neurons reduced pruritogen-evoked scratching.
Related Products: SSP-SAP (Cat. #IT-11)
See Also:
Cannabidiol partially blocks the excessive sleepiness in hypocretindeficient rats: Preliminary data.
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Morales-Lara D, Mechoulam R, Drucker-Colín R (2019) Cannabidiol partially blocks the excessive sleepiness in hypocretindeficient rats: Preliminary data. CNS Neurol Disord Drug Targets 18(9):705-712. doi: 10.2174/1871527318666191021143300
Objective: To determine whether the systemic injection of CBD (5 mg/kg, i.p.) would block the excessive sleepiness in a narcoleptic model.
Summary: Preliminary findings suggest that CBD might prevent sleepiness in narcolepsy.
Usage: Orexin-SAP (490 ng/0.5 μL, n= 10) was bilaterally injected into the LH of rats to eliminate HCRT leading to the establishment of narcoleptic-like behavior.
Related Products: Orexin-B-SAP (Cat. #IT-20)
Systemic ß adrenergic stimulation/ sympathetic nerve system stimulation influences intraocular RAS through cAMP in the RPE
Martins JR, Reichhart N, Kociok N, Stindl J, Foeckler R, Lachmann P, Todorov V, Castrop H, Strauß O (2019) Systemic ß adrenergic stimulation/ sympathetic nerve system stimulation influences intraocular RAS through cAMP in the RPE. Exp Eye Res 189:107828. doi: 10.1016/j.exer.2019.107828 PMID: 31589840
Objective: To investigate whether systemic β-adrenergic stimulation of the retinal pigment epithelium (RPE) also modulates renin expression in the RPE.
Summary: In vitro analysis of renin gene expression using polarized porcine RPE showed that the activity of the renin promoter can be increased by cAMP stimulation (IBMX/forskolin) but was not influenced by angiotensin-2.
Usage: Immunohistochemistry; eye sections were labeled overnight at 4°C with Anti-AT-1R.
Related Products: Angiotensin II receptor (AT-1R) Rabbit Polyclonal, affinity-purified (Cat. #AB-N27AP)