Osterlund Oltmanns JR, Schaeffer EA, Blackwell AA, Pietrucha SA, Yang H, Tasi S, Kartje GL, Wallace D (2021) Effects of age on sexually dimorphic food protection behavior associated with hippocampal cholinergic deafferentation. Neuroscience 2021 Abstracts P210.07. Society for Neuroscience, Virtual.
Summary: Loss of hippocampal cholinergic projection originating from basal forebrain structures has been associated with the progression of Dementia of the Alzheimer’s Type. The role of these fibers in information processing deficits has been debated; however, spontaneous behaviors such as food protection have been observed to dissociate the contributions of hippocampal and cortical cholinergic function. Sexual dimorphism and age are critical factors in the progression of neurodegenerative disorders, yet these factors have not been evaluated in food protection behavior. The current study infused the immunotoxin 192-IgG-Saporin bilaterally into the medial septum to produce selective cholinergic deafferentation of the hippocampal formation. Female and male rats received infusion of the immunotoxin at either three or 18 months of age. Testing in the in the food protection paradigm began six weeks after the surgery. During the five days of testing, rats received two food protection sessions. Each of these sessions involved the rat (dodger) being placed in a transparent cylinder with a same sex conspecific (robber). The dodger was given a one-gram food item to consume, while the robber made multiple attempts to obtain the food item. The number, success rate, and type of food protection behaviors were recorded across all food protection sessions. Rats also received a third session each day in which the latency to consume the food item was recorded in the absence of the conspecific. Preliminary results indicate that sex and age interact with cholinergic hippocampal deafferentation to influence the organization of food protection behaviors. These observations establish a foundation for future work investigating novel therapeutic interventions that target neuroplasticity within spared cholinergic systems.
Related Products: 192-IgG-SAP (Cat. #IT-01)