1. Home
  2. Knowledge Base
  3. References
  4. Attenuated CCK-induced satiation and increased weight gain following destruction of abdominal vagal afferents by intravagal OX7-saporin conjugate.

Attenuated CCK-induced satiation and increased weight gain following destruction of abdominal vagal afferents by intravagal OX7-saporin conjugate.

Bukowski RK, Duffy TE, Ryu V, Covasa M, Czaja K, Ritter RC (2009) Attenuated CCK-induced satiation and increased weight gain following destruction of abdominal vagal afferents by intravagal OX7-saporin conjugate. Neuroscience 2009 Abstracts 870.5/DD2. Society for Neuroscience, Chicago, IL.

Summary: Bilateral subdiaphragmatic vagotomy attenuates reduction of food intake by cholecystokinin (CCK) and other GI satiation signals. However, abdominal vagotomy also is associated with mild to moderate reductions of food intake and body weight gain. These sequels of vagotomy may be due to surgical trauma, gastroesphageal dysmotility or, perhaps, hypersensitivity of residual or regenerating afferent vagal fibers and terminals. In an attempt to selectively destroy the abdominal vagal afferents and their cell bodies, we injected the abdominal vagal trunks with OX7-saporin (OX7), a conjugate of the ribosomal toxin, saporin, and a monoclonal antibody against Thy1. This conjugate has been shown to destroy vagal afferent cell bodies in the ipsilateral nodose ganglion following unilateral injection into a cervical vagal trunk. In our study rats received an IP injection of fast blue (FB) which retrogradely labeled cell bodies of abdominal vagal afferents, enabling us to verify their destruction. OX7 was injected into both dorsal and ventral abdominal vagal trunks using a picospritzer and capillary pipettes. Beginning two weeks after OX7, the rats were tested for reduction of food intake by IP injection of CCK-8 (4ug/kg). Subsequently, nodose ganglia from the treated rats and their controls were examined to determine the number of FB-labeled nodose neurons remaining in the ganglia. Successful destruction of nodose neurons varied between animals. However, in OX7-treated rats the number of FB-labeled nodose neurons was reduced by approximately 60%, compared to vehicle injected controls. While CCK injection significantly reduced food intake in control rats, CCK-induced reduction of intake by the OX7 treated group was significantly attenuated. Interestingly, the OX7-treated rats did not exhibit the chronically reduced body weight that is typical of surgically vagotomized rats. In fact OX7 rats actually gained more weight than control rats over the 30 period following vagal injections. Our data indicate that immunotoxic destruction of the abdominal vagal innervation mimics surgical vagotomy in its attenuation of CCK-induced satiation, but does not cause sustained reduction of body weight.

Related Products: OX7-SAP (Cat. #IT-02)