1. Home
  2. Knowledge Base
  3. References
  4. Chronic treadmill exercise improves cerebellar functions: Alterations in mitochondrial protein expression, rotarod performance, and toxin resistance.

Chronic treadmill exercise improves cerebellar functions: Alterations in mitochondrial protein expression, rotarod performance, and toxin resistance.

Huang T-Y, Lin L-S, Chen H-I, Jen C (2009) Chronic treadmill exercise improves cerebellar functions: Alterations in mitochondrial protein expression, rotarod performance, and toxin resistance. Neuroscience 2009 Abstracts 660.18/CC34. Society for Neuroscience, Chicago, IL.

Summary: The effects of exercise on cerebellar functions were studied. Five-week-old male Wistar rats were divided into exercise and sedentary groups. For exercise groups, rats were subjected to 8 weeks of treadmill exercise at moderate intensity. In some groups, rats were administered with OX7-saporin, a cerebellar Purkinje cell toxin, into the lateral ventricle during the 5th week of training. At the end of training period, they were tested for rotarod performance. Brain tissues were obtained for measurement of mitochondria-related protein, including Mfn2, OPA1, Drp1 and CcOx-IV. The morphology of Purkinje cells was also examined by two photon microscopy. Our results showed that exercise training improve rotarod performance, and increased cerebellar protein levels of Mfn2 and OPA1 (mitochondrial fusion proteins) but not Drp1 (mitochondrial fission protein) or CcOx-IV (a mitochondrial complex IV marker). The dendritic field of Purkinje cells was significant modified in exercise groups. OX7-saporin application impaired the rotarod performance and decreased cerebellar Purkinje cell number only in sedentary rats. In summary, chronic exercise enlarged dendritic field of Purkinje cells and improved cerebellar function, including the rotarod performance, the mitochondrial fusion protein expression, and the resistance to toxin insult.

Related Products: OX7-SAP (Cat. #IT-02)

Shopping Cart
Scroll to Top