Gulino R, Gulisano M (2009) Poster: Expression of cell fate determinants and plastic changes after neurotoxic lesion of adult mice spinal cord by cholera toxin-B saporin. Neuroscience 2009 Abstracts 563.15/DD51. Society for Neuroscience, Chicago, IL.
Summary: Recent studies have attempted to achieve recovery after spinal cord (SC) injury or disease by either increase neurogenesis or stimulate neuroplasticity. Sonic hedgehog (Shh) Notch-1 and Numb are involved in the regulation of stem cell function. Additionally, Notch-1 has a role as modulator of synaptic plasticity. Little is known about the role of these proteins in the adult SC after selective removal of motoneurons. We injected Cholera toxin-B saporin into the gastrocnemius muscle to induce a selective depletion of motoneurons within lumbar mice SC and analysed the expression levels of Shh, Notch-1, Numb, Choline acetyltransferase (ChAT) and Synapsin-I proteins. The functional outcome of the lesion was monitored by grid walk test and rotarod. The neurotoxin lesion determined a motoneuron depletion and a decrease of ChAT and Synapsin-I protein levels in the lumbar SC. ChAT and Synapsin-I appeared correlated each other and with the motor performance, suggesting that the recovery of locomotion could depend from synaptic plasticity. Moreover, we observed a number of proliferating cells within the depleted SC, which were identified as active astrocytes. Shh and Notch-1 appeared reduced in the lesioned tissue and correlated with ChAT and Synapsin-I levels, suggesting a role in modulating synaptic plasticity. Numb expression was also reduced after lesion and appeared correlated with motor performance Therefore, given the role of these proteins in adult neurogenesis, we presume their involvement also in the observed glial reaction. The in vivo manipulation of Shh, Notch-1 and Numb signalling after lesion could be a way to reduce glial reaction and improve functional recovery.
Related Products: CTB-SAP (Cat. #IT-14)