Lima T-Z, Blanco MM, Bueno MA, Dos Santos Junior JG, Bargieri DY, Mello LE (2009) The influence of cholinergic degeneration on the progression of Alzheimer’s disease and its action in determining the outcome of lithium treatment. Neuroscience 2009 Abstracts 139.26/D36. Society for Neuroscience, Chicago, IL.
Summary: A substantial loss of cholinergic innervation in the hippocampus and cerebral cortex is universally accepted as a typical feature of Alzheimer’s disease (AD). Cholinergic deafferentation is an often, but not a constant phenomenon in AD and its contribution to the progression of disease is not completely understood. The present work was aimed to evaluate the effect of cholinergic deafferentation on cognitive decline and on Amyloid-b (A_) metabolism and how this outcome is modulated by lithium. To this end rats were subjected to neonatal intracerebroventricular injection of 192 IgG-saporin (an immunotoxin selective to cholinergic neurons). Three months after surgery animals were evaluated in Morris Water Maze (MWM) and then entered a three months long lithium (LiCl) or control treatment. At the end of treatment, animals were once again tested in MWM and their cerebral cortical A_ levels were measured. We found that working memory impairment arises earlier and it is also more severe than reference memory related deficits. The cognitive performance was only slightly influenced by LiCl treatment. Furthermore we found that the cholinergic denervation produced by neonatal IgG-sap infusion did not modify A_ levels or its aggregation state. Moreover lithium increased the levels of A_1-42 despite decreasing the amount of A_1-40, an effect that is dependent of cholinergic integrity. These data suggest that the contribution of cholinergic deafferentation, which occurs over the progression of disease, to the amyloigenesis is likely to be modest in AD brain. In addition the effects of lithium treatment presented here imply in avoiding its use as prophylactic propose for AD and in AD cases without marked cholinergic degeneration.
Related Products: 192-IgG-SAP (Cat. #IT-01)