Wiater MF, Jansen H, Oostrom M, Li A-J, Dinh T, Ritter S (2011) Lesions targeting leptin-sensitive neurons in the mediobasal hypothalamus dissociate activity and temperature circadian rhythms. Neuroscience 2011 Abstracts 396.11. Society for Neuroscience, Washington, DC.
Summary: Previously we investigated the role of NPY and leptin sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound regulatory and circadian deficits. We propose that the MBH, particularly the arcuate nuclei (Arc), is required for the integration of homeostatic circadian systems including temperature and activity. We tested this hypothesis with the use of the saporin toxin conjugated to leptin (Lep-SAP) or a blank molecule with no known biological function or receptor (B-SAP) directed to the Arc. Lep-SAP binds to, is internalized by and destroys leptin receptor expressing neurons at the injection site. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth similar to a ventromedial lesioned rat. Activity and temperature data were collected using intraperitoneal PDT-4000 Emitters with Vital View Data Acquisition Software (Mini Mitter, Philips Respironics, Bend, OR). Circadian rhythms were examined over 49 days during the static phase of obesity in B-SAP (n=10) and Lep-SAP (n=12) rats. Rats were maintained on a 12:12 light:dark (LD) schedule for 13 days and thereafter maintained in continuous dark (DD). After the first thirteen days of DD, food was restricted to four hours per day from 9AM until 1PM for ten days. Immediately thereafter, rats were fasted for three days to evaluate persistence of food-entrained rhythms. Using ClockLab software (Natick, MA) actograms and tempograms were generated as double raster plots. Lomb-Scargle periodograms were used to assess rhythms and their robustness. We found that Lep-SAP rats were arrhythmic for activity in DD, but that food anticipatory activity was nevertheless entrainable to the restricted feeding schedule and the entrained rhythm persisted during the subsequent 3-day fast. Thus, for activity, the light-entrainable oscillator, but not the food entrainable oscillator, was disabled by the MBH lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats, but did not entrain to restricted feeding. We conclude that the leptin-sensitive network of the Arc and MBH is required for entrainment of activity by photic cues and for entrainment of temperature by food and for the integration of these rhythms.
Related Products: Leptin-SAP (Cat. #IT-47), Blank-SAP (Cat. #IT-21)