1. Home
  2. Knowledge Base
  3. References
  4. Depletion of spinal norepinephrine increases the duration of postoperative pain related behaviors following acute plantar incision and partial nerve injury in the rat.

Depletion of spinal norepinephrine increases the duration of postoperative pain related behaviors following acute plantar incision and partial nerve injury in the rat.

Wang F, Eisenach JC, Peters CM (2012) Depletion of spinal norepinephrine increases the duration of postoperative pain related behaviors following acute plantar incision and partial nerve injury in the rat. Neuroscience 2012 Abstracts 785.11. Society for Neuroscience, New Orleans, LA.

Summary: Background and Objective: The percentage of patients that develop chronic postsurgical pain can range from 10-50% depending on the type of surgery. The underlying mechanisms responsible for the transition from an acute to chronic postoperative pain state are unknown. Recent clinical studies suggest that the integrity of endogenous pain inhibitory circuits may be important for preventing this transition. The descending noradrenergic transmission has well-known inhibitory effects on spinal synaptic transmission and norepinephrine has anti-inflammatory effects on spinal glial activation. We hypothesized that disrupting spinal noradrenergic fibers in rats prior to peripheral tissue injury would enhance spinal glial activity and impair resolution of postoperative pain. Methods: To test this hypothesis, we used a model of acute pain (Brennan incision model) and a model of nerve injury involving partial L5 spinal nerve ligation. We intrathecally injected dopamine β hydroxylase conjugated to the ribosomal toxin saporin (DβH-sap, 5 μg) or control (IgG-sap) to Sprague-Dawley rats 14 days prior to surgery to deplete noradrenergic fibers. Sensitivity to mechanical stimuli (von Frey) and spontaneous guarding were assessed for several weeks. We used immunohistochemistry to assess microglial (IBA1) and astrocyte (GFAP) activation in spinal cord tissue. Results: Depletion of noradrenergic fibers resulted in a significant increase in the duration of mechanical hypersensitivity in the ipsilateral paw of rats with plantar incision (6 days in IgG-sap treated rats vs. at least 21 days in DβH-sap treated rats) and partial L5 spinal nerve ligation (42 days in IgG-sap treated rats vs. at least 70 days in DβH-sap treated rats). Depletion of noradrenergic fibers did not affect mechanical withdrawal thresholds in normal rats suggesting both tissue injury and spinal noradrenergic depletion were required for prolonged mechanical hypersensitivity. The duration of spontaneous guarding following plantar incision was not affected by DβH-sap treatment. Additionally, microglia and astrocyte activation was increased in the spinal cord 21 days following incision and 70 days after nerve injury in DβH-sap treated rats compared to IgG-sap treated rats. Conclusions: These findings highlight the crucial role of spinally projecting noradrenergic pathway in the resolution of incision and nerve injury induced hypersensitivity which may be due in part to inhibitory effect of norepinephrine on spinal glial activation. Future studies will focus on the adrenergic receptor subtypes and mechanisms responsible for the transition from acute to chronic postoperative pain in these models.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Shopping Cart
Scroll to Top