1. Home
  2. Knowledge Base
  3. References
  4. Intercalated nucleus modulates chemosensory processing in medial amygdala.

Intercalated nucleus modulates chemosensory processing in medial amygdala.

Biggs LM, Simonton AR, Meredith M (2012) Intercalated nucleus modulates chemosensory processing in medial amygdala. Neuroscience 2012 Abstracts 781.07. Society for Neuroscience, New Orleans, LA.

Summary: The vomeronasal organ is necessary for interpretation by naive rodents (hamsters, mice) of many chemosensory signals. Information is relayed to medial amygdala (Me) via the accessory olfactory bulbs. FRA (Fos related antigen) responses in Me to chemosensory cues suggest this area is important for categorization of cues based on biological relevance to the animal. Anterior Me (MeA) is activated by all chemosensory cues (conspecific and heterospecific). Posterior Me (MeP) activates for conspecific and biologically relevant heterospecific stimuli only. Other heterospecific stimuli suppress MeP, apparently via GABA inhibition, while the adjacent medial-caudal intercalated nucleus (m-ICNc) is activated. Intercalated nuclei (ICNs) are groups of GABAergic cells between amygdala main-divisions. Those adjacent to basolateral and central amygdala (BLA, CeA) are known to mediate BLA, CeA responses via GABA inhibition, modulated by inhibitory DA-D1 receptors on ICN cells. We hypothesize that m-ICNc modulates MeP in a similar manner, as suggested by FRAs data, but this has not yet been tested directly. In hamsters, we show a hyperpolarization of MeP cells and suppression of ongoing spiking in whole-cell slice electrophysiology using in-slice stimulation of m-ICNc. The effect of dopamine and other modulators on this functional relationship is under study with agonists and antagonists. ICN, but not Me, cells carry mu-opioid receptors (MORs). In mice, we use Dermorphin-Saporin, a toxin that selectively destroys MOR+ neurons, to lesion m-ICNc to assess its role in chemosensory responses in MeP. Also in mice, a specific MUP protein in male urine (mMU) facilitates learning of a male’s chemosensory signature by females. We have quantified Me response to high and low molecular weight (HMW, LMW) fractions (LMW lacks protein) and whole mMU using FRAs immediate early gene expression. Preliminary results show no significant difference between HMW, LMW, or whole mMU in Me, however within the BLA (involved in volatile odor learning), there are significant differences in activity between stimuli in females without post-weaning exposure to male urine and no prior exposure to adult male urine.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)

Shopping Cart
Scroll to Top