Lee S-Y, Ma J, Chung C, Han J-S (2012) Effects of chronic stress on alterations of GR-PKA-NF-kappa B signaling and spatial learning in rats with cholinergic deafferentation. Neuroscience 2012 Abstracts 345.20. Society for Neuroscience, New Orleans, LA.
Summary: Aging and Alzheimer’s disease (AD) is associated with diminished integrity of the cholinergic innervations of the hippocampus and cortex. Previously, we demonstrated that removal of the cholinergic innervations impaired regulation of the HPA axis with response to acute stress and induced changes in the interaction among glucocorticoid receptor (GR), nuclear factor-κB (NF- κB) p65, and the cytoplasmic catalytic subunit of protein kinase A (PKAc) in the hippocampus. The current research examined effects of chronic stress on the altered signaling induced by cholinergic deafferentation. Young adult rats received immunotoxic lesions of basal forebrain cholinergic neurons by intracranial injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. After 2 weeks recovery from surgery, rats with cholinergic lesions and vehicle-injected control rats were subjected to 1 hr restraint stress per day for 2 weeks. Rats with only cholinergic deafferentation or sham-operated rats with chronic stress showed intact spatial learning. Rats with cholinergic deafferentation that received chronic stress showed impairments of spatial learning. And we examined that cholinergic deafferentation induced alterations in GR and NF- κB p65 expression in hippocampus and prefrontal cortex. Thus the loss of cholinergic integrity during aging and in AD may increase proneness to chronic stress.
Related Products: 192-IgG-SAP (Cat. #IT-01)