Ostock CY, Conti MM, Larose T, Meadows S, Bishop C (2015) Cognitive and motor deficits in a rodent model of Parkinson’s disease displaying concurrent dopamine and acetylcholine loss. Neuroscience 2015 Abstracts 676.26/D33. Society for Neuroscience, Chicago IL.
Summary: Dopamine (DA) loss in Parkinson’s disease (PD) is frequently accompanied by degeneration of acetylcholine neurons within the basal forebrain (BF) and the pedunculopontine nucleus (PPN). Recently, Ach neurons in these nuclei have been implicated in both the motor and non-motor symptoms of PD. However, few rodent models of PD actually account for Ach loss in both the BF and PPN. Here, we evaluated the effects of concurrent BF and PPN Ach loss alone and in combination with striatal DA loss on motor and cognitive performance in a rat model of PD. Sprague-Dawley rats (N = 44) received bilateral: striatal 6-OHDA lesions to deplete DA (DA-lesioned; n = 14), BF (192 IgG-Saporin) and PPN (anti-ChAT Saporin) saporin lesions to deplete Ach (Ach-lesioned; n = 10), combined 6-OHDA + saporin lesions (dual-lesioned; n = 6) , or sham lesions (n = 14). Following recovery from surgery, rats underwent a battery of motor and cognitive behavioral tests. Results indicated that Ach-lesioned and dual-lesioned rats displayed spatial memory deficits on the Morris Water Maze and Spontaneous Alternation tests. DA and Ach lesions alone impaired stepping for the forepaw adjusting steps and vibrissae-elicited paw placement tests and this deficit was exacerbated in dual-lesioned rats. However, only rats with Ach or dual lesions showed motor deficits on the rotarod tests. Collectively, these findings demonstrate that Ach loss may exacerbate cognitive and motor symptoms in PD and highlight the importance of including Ach loss in preclinical models of PD.
Related Products: 192-IgG-SAP (Cat. #IT-01), Anti-ChAT-SAP (Cat. #IT-42), Saporin (Cat. #PR-01)