SFN Poster of the Year 2012

Awarded by ATS at Society for Neuroscience (SFN) October 13-17, 2012 • New Orleans, LA

496.03 The GRP peptide and the GRPR-positive interneurons control fear acquisition and extinction.
K Zushida, K Light, S Uchida, C Hevi, G P Shumyatsky
featuring IT-40 Bombesin-SAP (Poster; Monday, Oct. 15, 3:00 pm – 4:00 pm)

The gastrin releasing peptide (GRP) is the marker of the neural circuits relaying fear-related conditioned stimulus (CS) information to the amygdala. The GRP is expressed by principal cells and the GRP-receptor (GRPR) is expressed by interneurons. The GRPR is expressed in the amygdala and hippocampus. To examine the role of the GRPR-positive interneurons in these two brain areas, we performed local injections of the bombesin-saporin (SAP)-toxin, which selectively eliminates the GRPR-expressing cells. The intra-BLA [lateral (LA) and basal nuclei (BA) of amygdala] injection of bombesin-SAP before fear conditioning significantly enhanced cued, but not contextual fear memory. We did not observe any significant effect of post-training intra-BLA injections of bombesin-SAP on fear memory recall. Also, there were no significant effects of bombesin-SAP on acquisition of contextual and cued fear memory in mice injected bombesin-SAP into LA, BA and central amygdala (CeA), respectively. Also, we examined cued fear memory in the GRP knockout mice and found significant enhancement in their cued fear memory. These results support the idea that GRPR-expressing interneurons play an inhibitory role in acquisition of fear memory and suggested inhibitory effect by the GRPR-expressing GABA interneurons on fear memory requires both LA and BA but not CeA.