1. Home
  2. Knowledge Base
  3. 2017 Targeting Trends Review

2017 Targeting Trends Review

21 entries

Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy.

Yuan X, Yang M, Chen X, Zhang X, Sukhadia S, Musolino N, Bao H, Chen T, Xu C, Wang Q, Santoro S, Ricklin D, Hu J, Lin R, Yang W, Li Z, Qin W, Zhao A, Scholler N, Coukos G (2018) Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol Immunother 67:329-339. doi: 10.1007/s00262-017-2101-0

Objective: ScFv78 was conjugated with the ribosome-inactivating protein saporin (Streptavidin-ZAP) to evaluate whether scFv78 may be used as a vehicle for theTEM1-targeted delivery of toxins.

Summary: Site-specific, biotinylated scFv78 was conjugated with streptavidin-labeled saporin (Streptavidin-ZAP; Cat. #IT-27) by incubation at room temperature for 1h at a molar ratio of 4:1 (scFv78:ZAP).

Usage: Mouse endothelial cells (MS1) and MS1 cells transduced to express full-length human TEM1 (MS1-TEM1) were cultured in 96-well plates to 30% confluence and then incubated for 96h in the presence of 10-fold serially diluted Streptavidin-ZAP, scFv78, or scFv78-ZAP starting from 40nM down to 0.04nM. The data indicate that scFv78, the first fully human anti-TEM1 recombinant antibody, recognizes both human and mouse TEM1 and has unique and favorable features that are advantageous for the development of imaging probes or antibody-toxin conjugates for a large spectrum of human TEM1-positive solid tumors.

Related Products: Streptavidin-ZAP (Cat. #IT-27)

C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.

Somasundaram P, Wyrick G, Fernandez D, Ghahari A, Pinhal C, Simmonds Richardson M, Rupp A, Cui L, Wu Z, Brown R, Badea T, Hattar S, Robinson P (2017) C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Proc Natl Acad Sci U S A 114:2741-2746. doi: 10.1073/pnas.1611893114 PMID: 28223508

Summary: The authors show that the melanopsin photoresponse shutoff due to C-terminal phosphorylation determines the kinetics of the intrinsic light response in ipRGCs, the PLR, and reentrainment, but not masking and phase angle of entrainment. Immunofluorescence was performed using rabbit Anti-Melanopsin (1:1,000, Cat. #AB-N38) as the primary antibody with a 2-d incubation period, followed by goat anti-rabbit IgG 488 as the secondary antibody.

Related Products: Melanopsin Rabbit Polyclonal (Cat. #AB-N38)

Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation.

Lecrux C, Sandoe C, Neupane S, Kropf P, Toussay X, Tong X, Lacalle-Aurioles M, Shmuel A, Hamel E (2017) Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation. J Neurosci 37:1518-1531. doi: 10.1523/JNEUROSCI.1784-16.2016

Summary: The authors assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex. ACh depletion was achieved via unilateral icv injection (4 mcg/2 mcl) with 192 IgG-SAP (Cat. #IT-01) or saline. They conclude that ACh is not only a facilitator, but also a prerequisite for the full expression of sensory-evoked NVC responses.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Cholinergic basal forebrain lesion decreases neurotrophin signaling without affecting tau hyperphosphorylation in genetically susceptible mice.

Turnbull M, Coulson E (2017) Cholinergic basal forebrain lesion decreases neurotrophin signaling without affecting tau hyperphosphorylation in genetically susceptible mice. J Alzheimers Dis 55:1141-1154.. doi: 10.3233/JAD-160805

Summary: Alzheimer’s disease(AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and area major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in AD are unknown. The authors investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Two-month-old male and female pR5 mice were infused with murine p75-SAP (Cat. #IT-16) at a concentration of 0.4 mg/ml or 0.4 mg/ml of control Rabbit IgG-SAP (Cat. #IT-35) using a 30G needle attached to a 5 ml Hamilton syringe and pump. The needle was lowered into the medial septum according to coordinates in a mouse brain atlas, and the toxin was infused at a rate of 0.4 ul/min (1.5 u total volume). The results reveal that the loss of BFCNs in pre-symptomatic pR5 tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals’ performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

Related Products: mu p75-SAP (Cat. #IT-16), Rabbit IgG-SAP (Cat. #IT-35)

Transcriptomic analysis of mouse cochlear supporting cell maturation reveals large-scale changes in notch responsiveness prior to the onset of hearing.

Maass J, Gu R, Cai T, Wan Y, Cantellano S, Asprer J, Zhang H, Jen H, Edlund R, Liu Z, Groves A (2016) Transcriptomic analysis of mouse cochlear supporting cell maturation reveals large-scale changes in notch responsiveness prior to the onset of hearing. PLoS One 11:e0167286. doi: 10.1371/journal.pone.0167286 PMID: 27918591

Summary: The ability of neonatal mouse cochlear supporting cells to divide and differentiate into hair cells is very limited and declines in the first two weeks after birth. This decline is associated with the morphological and functional maturation of the organ of Corti prior to the onset of hearing, however little is known of the molecular changes that underlie these events. The authors attempt to identify these changes using RNA-seq to generate transcriptional profiles of purified cochlear supporting cells and found significant changes in gene expression related to regulation of proliferation, differentiation of inner ear components and the maturation of the organ of Corti. The authors also examined the regenerative potential of supporting cells in production of hair cells in response to a blockade of the Notch signaling pathway at the time of birth, but a complete lack of response just a few days later. Analysis included IHC on frozen sections of paraformaldehyde-fixed temporal bones of LfngEGFP mice. Anti-NGFr (mup75) (Cat. #AB-N01AP) was used at a 1:200 dilution. The results offer first molecular insights into the failure of hair cell regeneration in the mammalian cochlea.

Related Products: NGFr (mu p75) Rabbit Polyclonal, affinity-purified (Cat. #AB-N01AP)

Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat.

Benn A, Robinson E (2017) Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat. Psychopharmacology (Berl) 234:255-266.. doi: 10.1007/s00213-016-4458-8

Summary: Atomoxetine is a noradrenaline re-uptake inhibitor licensed for the treatment of adult and childhood attention deficit hyperactivity disorder. Although atomoxetine has established efficacy, the mechanisms which mediate its effects are not well understood. In this study, the authors investigated the role of cortical versus sub-cortical noradrenaline by using focal dopamine beta hydroxylase-saporin-induced lesions, to the prefrontal cortex (PFC) or nucleus accumbens shell (NAcSh). Male Lister hooded rats received bilateral lesions by using stereotaxic injections of the immunotoxin Anti-DβH-SAP (Cat. #IT-03), 0.02 μg in 0.5 μL per injection into the PFC and 0.004 μg in 0.2 μL per injection for NAcSh lesions. The data suggest that noradrenaline in the nucleus accumbens shell plays an important role in the effects of atomoxetine. Under these conditions, prefrontal cortex noradrenaline did not appear to contribute to atomoxetine’s effects suggesting a lack of cortical-mediated “top-down” modulation. Noradrenaline in the prefrontal cortex appears to contribute to the modulation of impulsive responding in amphetamine-treated animals, with a loss of noradrenaline associated with potentiation of its effects. These data demonstrate a potential dissociation between cortical and sub-cortical noradrenergic mechanisms and impulse control in terms of the actions of atomoxetine and amphetamine.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons.

Cai Y, Chew C, Muñoz F, Sengelaub D (2017) Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons. Dev Neurobiol 77:691-707.. doi: 10.1002/dneu.22445

Summary: In this study the authors examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites and if these neuroprotective effects were mediated through steroid hormone receptors. Analysis was done using receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. These motoneurons were selectively killed by intramuscular injection of CTB-SAP (2 ul, 0.1%) (Cat. #IT-14). Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone and attenuation of atrophy was prevented by receptor blockade. Together, the results suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system.

Related Products: CTB-SAP (Cat. #IT-14)

Immunohistochemical detection of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish, Eptatretus burgeri.

Amano M, Amiya N, Yokoyama T, Onikubo K, Yamamoto N, Takahashi A (2016) Immunohistochemical detection of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish, Eptatretus burgeri. Gen Comp Endocrinol 236:174-180. doi: 10.1016/j.ygcen.2016.07.018 PMID: 27444128

Summary: The distribution of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish Eptatretus burgeri, representing the earliest branch of vertebrates, was examined by immunohistochemistry to better understand the neuroendocrine system of hagfish. A rabbit polyclonal antibody raised against human/mouse/rat CRH (Cat. #AB-02) was used. A standard curve was obtained from 0.78 ng/ml to 50 ng/ml. The cross-reactivity of anti-CRH antibody against CRH family peptides was found to be less than 0.01%, indicating the specificity of the antibody. The specificity of the antibody raised against human/mouse/rat CRH was demonstrated by a TR-FIA and absorption test. CRH-ir cell bodies were detected in two brain regions; the preopticohypothalamic area (PO, POp, and Hyinf) and the medulla oblongata. CRH-ir fibers were mainly distributed in the hypothalamus and the medulla oblongata, in which CRH-ir cell bodies were detected.

Related Products: Corticotropin Releasing Hormone Rabbit Polyclonal (Cat. #AB-02)

Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region.

Silva T, Takakura A, Moreira T (2016) Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region. Exp Neurol 285:1-11. doi: 10.1016/j.expneurol.2016.08.016

Summary: Catecholaminergic C1 cells reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM) and can be activated by hypoxia. These neurons regulate the hypothalamic pituitary axis via direct projections to the hypothalamic paraventricular nucleus (PVH) and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The present results suggest that catecholaminergic C1-PVH projection is hypoxia-sensitive and the pathway between these two important brain areas can be one more piece in the complex puzzle of neural control of autonomic regulation during hypoxia. Male Wistar rats were injected with the targeted toxin Anti-DβH-SAP (Cat. #IT-03), 21 ng/100 nl, or saline, unilaterally into the PVH using the following coordinates: 1.2 mm caudal to bregma, 0.4 mm lateral to the midline and 7.8 mm below the dura mater. The author’s work adds a piece in the complex puzzle of the physiological role of the C1 cells by showing that this catecholaminergic group of cells must be activated only in emergency situations such as acute hypoxia, producing autonomic, metabolic, and neuroendocrine responses designed to help the organism survive major acute physical stresses.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived xenografts.

Ngo M, Han A, Lakatos A, Sahoo D, Hachey S, Weiskopf K, Beck A, Weissman I, Boiko A (2016) Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived xenografts. Cell Rep 16:1701-1716. doi: 10.1016/j.celrep.2016.07.004

Summary: The high rate of metastasis and recurrence among melanoma patients indicates the presence of cells within melanoma that have the ability to both initiate metastatic programs and bypass immune recognition. The authors identified CD47 as a regulator of melanoma tumor metastasis and immune evasion. The study involved antibody-mediated blockade of CD47 coupled with targeting of CD271+ melanoma cells by way of ME20.4-SAP (Cat. #IT-15). Mice bearing human melanoma tumor (M213 or M727) were randomized into four treatment groups with one of those groups receiving treatment with ME20.4-SAP. 1 ug in 50 ul volumes were injected directly into the center mass of the tumor once every 2 days. A therapeutic effect was observed where tumor metastasis in patient-derived xenografts was strongly inhibited when treated with the combination of antibody-mediated blockade of CD47 and targeted with ME20.4-SAP.

Related Products: ME20.4-SAP (Cat. #IT-15)

Shopping Cart
Scroll to Top