sfn2011

36 entries

Cholinergic neurons of the basal forebrain and nitric oxide-mediated regulation of sleep homeostasis.

Kalinchuk AV, Porkka-Heiskanen T, Mccarley RW, Basheer R (2011) Cholinergic neurons of the basal forebrain and nitric oxide-mediated regulation of sleep homeostasis. Neuroscience 2011 Abstracts 397.15. Society for Neuroscience, Washington, DC.

Summary: The levels of adenosine (AD) and inducible nitric oxide (NO) synthase (iNOS)-mediated NO increase during sleep deprivation (SD) in the basal forebrain (BF), and, with prolongation of SD, in the frontal cortex (FC). NO donor (DETA NONOate) infusion increases AD and sleep, while iNOS/NO inhibition prevents SD-induced AD increase, suggesting that iNOS/NO stimulates AD increase (Kalinchuk et al., 2006). iNOS induction during SD occurs in wake-active neurons in the BF and FC (Kalinchuk et al., 2010, 2011), however, neurotransmitter specificity of these cells has not described. The lesion of BF cholinergic cells attenuates both SD-induced AD increase and recovery sleep response (Kalinchuk et al., 2008). Hence in this study, we tested the role of cholinergic versus non-cholinergic neurons in iNOS/NO release in BF and FC and homeostatic sleep response. Methods. We performed two types of experiments. Experiment #1. Immunohistochemical detection of neurotransmitter specificity of cells inducing iNOS during SD. The brains of SD animals and their non-SD time-of-day matched controls were subjected to double-labeling with specific markers for iNOS, acetylcholinetransferase (ChAT), vesicular glutamate transporters (VGlut) and glutamate decarboxylase (GAD67). Experiment #2. The effects of SD on iNOS/NO production and the effect of NO-donor, DETA NONOate infusion on sleep were investigated before and after destruction of BF cholinergic neurons using 192 IgG-saporin. In both experiments male rats were implanted for electrographic recording and Experiment # 2 used guide cannula for microdialysis probes targeting BF and FC. In Experiment #2, recording of sleep-waking cycle, SD for 3h and infusion of DETA NONOate for 3h were performed on the same animals before and 2 weeks after targeted saporin injections. Results. Experiment #1. SD led to significant increases in number of iNOS+ cells in the BF and FC. Preliminary data showed that in the BF, in SD group, 96% of ChAT+ cells were also iNOS+, while in the non-SD group only 4% of ChAT+ neurons had weak iNOS+ staining. Numbers of iNOS+/ChAT+ cells positively correlated with SD-induced increase in theta power. Experiment #2. Before saporin injection, both SD and infusion of DETA NONOate induced significant increases in subsequent NREM sleep/NREM delta power (by 35/47% and 39/41%, respectively). After saporin injection, both recovery NREM sleep and DETA NONOate-induced sleep were significantly attenuated (8 and 4% increase as compared with baseline) and increases in delta power were totally blocked. Conclusions. We conclude that cholinergic neurons of the BF are important for iNOS/NO-mediated homeostatic sleep control.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Role of the medial septal-diagonal band nucleus in working memory: Effects of cholinergic or GABAergic lesions on memory demand and interference

Stewart AL, Roland JJ, Servatius RJ, Pang K (2011) Role of the medial septal-diagonal band nucleus in working memory: Effects of cholinergic or GABAergic lesions on memory demand and interference. Neuroscience 2011 Abstracts 513.09. Society for Neuroscience, Washington, DC.

Summary: The medial septum and diagonal band of Broca (MSDB), a major source of afferents to the hippocampal formation, is critical for learning and memory. The primary cells comprising the septohippocampal systems are cholinergic, GABAergic and glutamatergic. Selective damage of cholinergic MSDB neurons results in mild to no impairment of spatial working memory tasks, suggesting that non-cholinergic MSDB projections are important in learning and memory. Recently, we demonstrated that GABAergic MSDB lesions impair a delayed match to position task (DNMTP) with errors suggesting enhanced proactive interference. The current study assesses the effect of manipulating the intertrial interval (ITI) and retention interval (RI) on DNMTP performance in normal rats and those with cholinergic or GABAergic MSDB damage. In addition, activation of MSDB neurons on the last day of training will be assessed. Male Sprague Dawley rats receive sham, 192-IgG saporin (192-Sap) or GAT1-saporin (GAT1-Sap) administration into the MSDB before training on a DNMTP task using a T-maze. On the sample phase of each trial, rats are forced to one arm for reinforcement. Following an RI, a choice phase allows the rats to choose from both arms. Rats are reinforced for choosing the arm not entered during the sample phase. Following the choice phase, an ITI occurs before the sample phase of the next trial. Rats are trained one session per day, 12 trials per session, and 10 sessions. In a 2 x 2 experimental design, each rat is trained on either a 0 or 60s RI and a 0 or 60s ITI. Conditions with a long RI (60 s) are designed to tax working memory, whereas conditions with a similar RI and ITI are designed to increase interference. Immunocytochemistry for c-Fos is used to assess activation of cholinergic or GABAergic MSDB neurons following the last training session. As expected, our preliminary results show that sham rats performed better on 0 s than 60 s RI (0 s = 78% correct vs 60 s = 57%, both ITI’s pooled). Analysis of the 0 s RI demonstrates that performance in conditions with different RI and ITI was better than when RI and ITI were similar (0 s RI/60 s ITI = 74% vs 0 s RI/0 s ITI = 67%). Further analysis of the 60 s RI was difficult due to the near chance performance. Rats treated with either intraseptal 192-Sap or GAT1-Sap were impaired on the 0 s RI/60s ITI condition (Sham: 85%; 192-Sap: 65%; GAT1-Sap: 72%). However, only the 192-Sap rats were impaired in the 0 s RI/0 s ITI condition (Sham: 71%; 192-Sap: 62%; GAT1-Sap: 69%). Anatomical studies are currently underway. The results of this study will further elucidate the role of MSDB neurons in two aspects of working memory: memory demand and interference.

Related Products: 192-IgG-SAP (Cat. #IT-01), GAT1-SAP (Cat. #IT-32)

Reduced hippocampal acetylcholine efflux after medial septal-diagonal band (MSDB) GABAergic lesion is associated with impaired working memory: behavioral and neurochemical effects of physostigmine.

Roland JJ, Stewart AL, Savage LM, Servatius RJ, Pang KCH (2011) Reduced hippocampal acetylcholine efflux after medial septal-diagonal band (MSDB) GABAergic lesion is associated with impaired working memory: behavioral and neurochemical effects of physostigmine. Neuroscience 2011 Abstracts 513.10. Society for Neuroscience, Washington, DC.

Summary: The medial septum provides cholinergic innervation of the hippocampus and changes in hippocampal acetylcholine (ACh) have been tied to memory; deficits and enhancements in memory are correlated with decreases or increases of ACh, respectively. Damage of GABAergic MSDB neurons impaired spatial working memory in a delayed non-match to position task with a 30-s retention interval (DNMTP). Interestingly, lesions reduced maze activated hippocampal ACh efflux, but did not alter basal hippocampal ACh efflux. The current study has two aims. First, is performance impaired and ACh efflux reduced in a non-match to position task (NMTP) with a 0-s retention interval following GABAergic MSDB damage? Second, is performance on DNMTP improved by enhancing hippocampal ACh efflux? Male Sprague-Dawley rats received intraseptal PBS or GAT1-saporin (to damage GABAergic neurons) and a ventral hippocampal microdialysis cannula to assess ACh efflux. In Exp. 1, rats were trained on NMTP for 10 days and received microdialysis on either day 2 (early) or day 9 (late). GAT1-saporin rats were not behaviorally impaired and hippocampal ACh efflux was similar in both treatment groups. These results suggest that performance with a short retention interval (NMTP) is more independent of MSDB influences than training with a long retention interval (DNMTP). Exp. 2 was designed to determine whether the reduced ACh efflux is a critical factor in impaired DNMTP performance in rats with GABAergic MSDB damage. In Exp. 2, all rats will receive 10 day of DNMTP training. On days 8 and 9, rats will be administered (i.c.v.) either saline or the acetylcholinesterase inhibitor, physostigmine (5μg/μl). The effects of physostigmine on behavioral performance and hippocampal ACh efflux will be determined. We predict that physostigmine will increase ACh efflux but not improve behavior, suggesting that hippocampal ACh is not important for DNMTP performance. However, support that both MSDB cholinergic and GABAergic neurons are important for DNMTP performance would be seen if physostigmine increases ACh efflux and enhances DNMTP performance. In summary, damage of MSDB GABAergic neurons modulates hippocampal ACh efflux during performance of a working memory task. Whether hippocampal ACh release plays a critical role in impaired working memory will be answered by these studies.

Related Products: GAT1-SAP (Cat. #IT-32)

The effects of noradrenergic lesions to the orbitofrontal cortex on reversal learning

Bates AT, Duys AN, Miller CE, Miller R, Mcgaughy J (2011) The effects of noradrenergic lesions to the orbitofrontal cortex on reversal learning. Neuroscience 2011 Abstracts 296.03. Society for Neuroscience, Washington, DC.

Summary: Poor impulse control is one of the major symptoms of disorders such as attention deficit disorder and is hypothesized to result from dysfunction in the prefrontal cortex. Specifically the ability to inhibit responding to a previously reinforced stimulus as required in tests of reversal rely on the functional integrity of the orbitofrontal cortex. Previous work from our lab and others have shown that norepinephrine in the prelimbic cortex is necessary to perform attentional set shifting. Lesions to this region result in attentional set shifting impairments that can be remediated by the administration of a selective noradrenergic reuptake blocker. Though many studies have shown monoamine levels in the orbitofrontal cortex are critical to reversal learning, few studies have directly addressed the impact of norepinephrine depletion in the orbitofrontal cortex on reversal learning. In the present study, we assess the effects of noradrenergic deafferentation of the orbitofrontal cortex in the intra-dimensional/extra-dimensional set shifting task using adult male, Long-Evans hooded rats. Preliminary data support the hypothesis that norepinephrine in orbitofrontal cortex is critical to successful reversal learning as the lesioned animals required more trials to reach criterion performance on reversals than sham-lesioned rats. Performance on the ID and ED portions of the task were not impacted by lesion. After behavioral testing was completed, brains were processed to elucidate norepinephrine transporters (NET). Fiber density of NET positive fibers was assessed in the regions of the orbitofrontal, prelimbic, and cingulate cortices for all subjects. These findings point to the function of the noradrenergic system within the orbitofrontal cortex on mediating impulse control while leaving attentional set shifting performance intact.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Transmission of neuropathic pain by spinal neurons expressing the NPY Y1 receptor

Donahue RR, Corder GF, Mcnamara KC, Wiley RG, Taylor BK (2011) Transmission of neuropathic pain by spinal neurons expressing the NPY Y1 receptor. Neuroscience 2011 Abstracts 179.16. Society for Neuroscience, Washington, DC.

Summary: Endogenous neuropeptide Y (NPY) acts at Y receptors in the dorsal spinal cord to exert a tonic inhibitory control of chronic allodynia (Solway et al, PNAS 108:7224-9, 2011). In this and the adjacent presentation, we tested the hypothesis that NPY does this by inhibiting Y1 receptors on pain transmission neurons or on central terminals of primary afferent neurons. We selectively lesioned cells expressing the NPY receptors in the dorsal horn with intrathecal administration of the NPY-conjugated ribosomal toxin, NPY-saporin. NPY-saporin significantly reduced the population of Y1 receptors in the lumbar dorsal horn by over 50%. Neither NK1 receptors in the dorsal horn, nor neuronal counts in the DRG were affected, suggesting a specific effect on Y1+, NK1- neurons in the dorsal horn, while sparing Y1+ central presynaptic terminals. Fourteen days later, we ligated the tibial and common peroneal branches of the sciatic nerve (spared nerve injury, SNI), and evaluated the development of allodynia and hyperalgesia on post-SNI days 1, 3, 5, 7, 14, 21, 28, 35, and 42. When compared to saporin controls, NPY-saporin (1000 ng) decreased mechanical allodynia (von Frey threshold), cold allodynia (paw withdrawal response to application of a drop of acetone) and mechanical hyperalgesia (paw response to blunt pin). This effect began three days after SNI and lasted until forty two days after SNI. When injected in uninjured rats, NPY-saporin did not disrupt motor coordination (accelerating rotarod), baseline heat or mechanical thresholds, or animal activity levels. We conclude that Y1-expressing cells in the dorsal horn exert a tonic facilitatory control of neuropathic pain, and partially mediate the inhibitory actions of NPY.

Related Products: NPY-SAP (Cat. #IT-28)

Activation of postsynaptic NPY Y1 and presynaptic Y2 receptors reduce spinal nociceptive transmission

Corder GF, Donahue R, Winter MK, Chen W, Mccarson KE, Marvizon J, Taylor B (2011) Activation of postsynaptic NPY Y1 and presynaptic Y2 receptors reduce spinal nociceptive transmission. Neuroscience 2011 Abstracts 179.17. Society for Neuroscience, Washington, DC.

Summary: Exogenous (Intondi et al, Neuroscience, 2008) and endogenous (Solway et al, PNAS 108:7224-9, 2011) neuropeptide Y (NPY) acts at Y1 and Y2 receptors in the dorsal horn (DH) to inhibit hypersensitivity to mechanical and thermal stimuli. The adjacent poster (Donahue, et al, SFN 2011) describes our use of a targeted NPY-saporin neurotoxin approach to selectively remove spinal cord (SC) neurons expressing the Y1 receptor — the data implicate a contribution of Y1-expressing, pain transmission neurons to behavioral signs of persistent pain. To determine whether persistent noxious input is associated with a compensatory increase in NPY-mediated inhibitory signaling (presumably at Y1-expressing DH neurons), we performed GTPγS binding assays in SC slices taken from animals following the intraplantar (i.pl) injection of complete Freund’s adjuvant (CFA). CFA significantly reduced the EC50 of Y1 agonist (Leu31,Pro34-NPY)-induced [35S]GTPγS binding in ipsilateral DH to 0.24 ± 0.17 μM, as compared to sham (1.38 ± 0.51 μM). This support the hypothesis that injury increases in the efficiency of coupling between Y1-receptors and G-proteins. To determine whether compensatory NPY inhibition occurs at presynaptic sites, we studied the activity of presynaptic Y2 receptor in NPY-saporin-treated rats. Intrathecal injection of the Y2 receptor antagonist BIIE0246 reduced von Frey thresholds (saporin group from 1.3±0.4 to 0.6 ±0.1g; 750 ng NPY-saporin group from 5.4±1.0 to 1.2±0.2g, p<0.05), suggesting that presynaptic Y2 receptors contribute to a tonic endogenous inhibition of inflammatory pain. In support of this hypothesis, BIIE0246-induced hyperalgesia (21 days after CFA) significantly increased the Emax of Y2 agonist (PYY3-36)-induced [35S]GTPγS binding. We next determined whether NPY acts at presynaptic terminals of primary afferent neurons to reduce the release of substance P (SP). First, in both the i.pl carrageenan and CFA models of inflammatory pain, intrathecal administration of NPY reduced in vivo neurokin-1 (NK1) receptor internalization (an indirect measure of functional SP release). Second, application of either (Leu31,Pro34)-NPY) or PYY3-36 to spinal cord slices concentration-dependently reduced NK1 internalization in the ipsilateral dorsal horn evoked by electrical stimulation of the dorsal root (1000 pulses of 20 V, 0.4 ms at 100 Hz); these effects were reversed by the Y1 antagonist BIBO3304. We conclude that injury up-regulates post-synaptic Y1 and pre-synaptic Y2 spinal inhibitory mechanisms to reduce behavioral signs of persistent pain.

Related Products: NPY-SAP (Cat. #IT-28)

The role of medial septal/diagonal band GABAergic neurons in proactive interference: Effects of selective immunotoxic lesions in latent inhibition

Sinha SP, Roland JJ, Servatius RJ, Pang KCH (2011) The role of medial septal/diagonal band GABAergic neurons in proactive interference: Effects of selective immunotoxic lesions in latent inhibition. Neuroscience 2011 Abstracts 199.22. Society for Neuroscience, Washington, DC.

Summary: The medial septum/diagonal band (MSDB) is a critical structure for learning and memory, yet the functional contributions of its individual neuronal populations (including cholinergic, GABAergic, glutamatergic and peptidergic cells) are still being characterized. Recent studies have implicated a contributing role for the GABAergic MSDB neuronal population, as selective immunotoxic GABAergic lesions of the MSDB (with GAT1-saporin) produce behavioral impairments in spatial and instrumental tasks. Compared to intact controls, rats with GABAergic MSDB lesions are impaired in learning new spatial locations in a delayed match to position procedure and also exhibit a slower rate of extinguishing a previously acquired avoidance response – behaviors that are consistent with an exacerbation of proactive interference. To further establish the role of these neurons in proactive interference, this study examined the effects of selective GABAergic MSDB lesions in latent inhibition (LI) of the classically conditioned eyeblink response. LI in delay eyeblink conditioning is a phenomenon in which pre-exposure to the conditioned stimulus (CS) interferes with the subjects’ ability to subsequently associate the CS with an unconditioned stimulus (US), resulting in slower acquisition of the conditioned response (CR). We hypothesized that if damage of GABAergic MSDB neurons increases proactive interference, then rats with selective lesions of these neurons would show facilitated LI. Male Sprague-Dawley rats (n=18) were administered either phosphate-buffered saline or GAT1-saporin via intracranial injection into the MSDB. After 7-10 days of recovery, electrodes were implanted into the upper eyelids of the rats for delivery of US and EMG recording. Conditioning began after another 5-7 days of recovery, with Day 1 consisting of 30 minutes of acclimation to the conditioning context. Day 2 began with either 30 presentations of the CS (82dB, 500ms white noise, 25 – 35s ITI) or context pre-exposure of equal duration, followed immediately by 100 paired CS-US trials (82 dB, 500ms white noise co-terminating with a 10V, 10ms square-wave stimulus). In preliminary results, intraseptal GAT1-saporin did not alter CR acquisition in context pre-exposed rats. Rats with GABAergic MSDB lesions continued to exhibit latent inhibition. These preliminary results do not support the idea that damage of GABAergic MSDB neurons increase proactive interference of the classically conditioned eyeblink response. Future studies will examine whether manipulations of the number of CS pre-exposures would facilitate LI in rats with GABAergic MSDB lesions.

Related Products: GAT1-SAP (Cat. #IT-32)

Targeted ablation of intrinsically photosensitive melanopsin expressing retinal ganglion cells early in development alters retinal morphology within the inner plexiform layer of mice

Van Der List DA, Chapman B (2011) Targeted ablation of intrinsically photosensitive melanopsin expressing retinal ganglion cells early in development alters retinal morphology within the inner plexiform layer of mice. Neuroscience 2011 Abstracts 232.12. Society for Neuroscience, Washington, DC.

Summary: It has been demonstrated in adult mice, that eliminating a small subset of retinal ganglion cells expressing the photopigment melanopsin (ip-RGCs) with an immunotoxin alters the effects of light on circadian rhythms. The immunotoxin was made by conjugating the melanopsin antibody with ribosome-inactivating protein, saporin. It has also been observed that the ablation of ip-RGCs in adult mice did not alter retinal morphology. Specifically, it was found that dendrites arising from starburst amacrine cells retained their position within the inner plexiform layer (IPL) suggesting no reorganization within this synaptic layer (Goz et al. 2008). In this study, we used the same melanopsin immunotoxin (Mx) (Advanced Targeting Systems) to perform intravitreal injections into mice at postnatal day one. The animals were sacrificed at P26 and the retina fixed in 4%PFA, frozen transverse sections were then immunostained with antibodies against melanopsin, choline acetyl transferase (ChAT), calreinin, calbindin, PKC and Kv4.2. In control retinae, melanosin antibody stained ip-RGC cell bodies and dendrites stratifying in both On and Off layers of the IPL, whereas retinae treated with Mx shows a loss of melanopsin-containing cell bodies and dendrites. In control retinae, ChAT stains starburst amacrine cells with cell bodies in the RGC and INL layers and two distinct bands in the IPL. In Mx treated retinae, most starburst amacrine cells appear to be eliminated along with melanopsin RGCs. Interestingly, if there is a hint of residual melanopsin expressing dendrites remaining, there is also a ChAT expressing cell body and a hint of dendrites in the synaptic layer. In control retinae, calretinin and calbindin antibodies stain a subset of RGCs and amacrine cells and show a characteristic three-layered pattern of dendrites in the IPL. In Mx treated retinae, the calretinin and calbindin layers within the IPL are altered showing an absent or more diffuse labeling pattern in the ON and OFF bands. Antibodies against PKC (staining rod bipolar cells) and Kv4.2 (stains a subset of retinal ganglion cells) do not show an altered staining pattern. These findings suggest that the initial stratification and structural development of synaptic layers in the IPL are altered by Mx treatment.

Related Products: Melanopsin-SAP (Cat. #IT-44)

Deficits in attentional control of balance, mobility, and complex movements in a rat model of early state, multisystem Parkinson disease

Spuz CA, Paolone G, Briscoe S, Bradshaw M, Albin RL, Sarter MF (2011) Deficits in attentional control of balance, mobility, and complex movements in a rat model of early state, multisystem Parkinson disease. Neuroscience 2011 Abstracts 244.02. Society for Neuroscience, Washington, DC.

Summary: In Parkinson disease (PD), basal forebrain cholinergic loss coincides with midbrain dopaminergic neuron loss and contributes to attentional deficits in PD. We hypothesize that these attentional deficits contribute to L-DOPA-insensitive impairments of mobility and postural control in PD. To assess complex movement control, we developed a novel Complex Motor Control Test (CMCT) for rats. The CMCT consists of several 2 m long beams (plank, 13.34 cm width; round rod, 3.81 cm diameter; square rod, 2.54 cm side length), which can be placed at zero, 22.5° or 45° angles in the vertical plane. Rods can rotate at 1 rpm or 10 rpm. A separate ladder apparatus (100 cm long, 7 cm wide, 2 cm between rungs, 5 mm rung diameter) can be placed at zero, 22.5° or 45° angles in the vertical plane and tilted laterally at 15° or 30° angles. Four high-resolution cameras and mirror system record animals’ performances. Rats are habituated by learning that plank traversal allows entry of home compartments containing individual bedding and palatable food. To separately assess attentional performance, we employed our Sustained Attention Task (SAT), including a distractor condition (dSAT). Our initial experiments determined CMCT and SAT performance in three groups: (1) animals with limited (40-60%) loss of cortical cholinergic afferents following immunotoxin 192-IgG saporin basal forebrain lesions (SAP); (2) animals with dopaminergic deafferentation following 6-OHDA dorsal striatal lesions (6-OHDA); (3) animals with both types of deafferentation (DUAL). SAT performance was dramatically impaired in SAP and DUAL animals. Control animals rapidly traversed angled and rotating rods and angled and tilted ladders. Deafferented animals were able to traverse the plank at all angles as effectively as control animals. Cholinergic lesions robustly impaired animals’ ability to maintain balance on the rods, to re-adjust posture on and traverse rotating rods, and had falls (into a net) or dismounts more frequently than control animals. These data reveal unexpectedly striking impairments in complex gait and movement control resulting from loss of corticopetal cholinergic neurons. These results support the hypothesis that basal forebrain cholinergic cell loss in PD contributes to complex posture and movement control deficits.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Evidence that focal interneuron lesions in the hippocampus may lead to a model of epileptogenesis in the mouse.

Rossi CA, Lehmkuhle MJ, Dudek FE (2011) Evidence that focal interneuron lesions in the hippocampus may lead to a model of epileptogenesis in the mouse. Neuroscience 2011 Abstracts 249.09. Society for Neuroscience, Washington, DC.

Summary: A selective loss of part of the overall population of GABAergic interneurons is a seminal component of many forms of human epilepsy, and is manifest in many animal models of acquired epilepsy, including those based on chemoconvulsant-induced status epilepticus. The current study specifically tests the hypothesis that partial interneuron loss in the dorsal CA1 area of the hippocampus induces epileptiform activity, and the subsequent hypothesis that interictal-like spikes and seizures progressively worsen during the following weeks and months. Focal interneuron lesions were made by intra-hippocampal injection of SSP-Saporin into dorsal CA1 in the hippocampus of GAD67-GFP transgenic mice. Chronic recording electrodes were implanted at the injection site, and local field potentials (LFPs) were monitored continuously during video recording for several weeks. LFP recordings were analyzed for the occurrence of inter-ictal-like paroxysmal events (hippocampal sharp waves of 50-100 msec), and frank seizures. Although interneuron lesions alone were seen to generate inter-ictal-like activity within several days following surgery, full-blown seizure activity was not observed until several weeks later. The current data suggest that disruption of the local GABAergic interneuron population may be a key event that triggers alteration of neural networks in the hippocampus, leading to paroxysmal events and ultimately seizures. The delay in onset suggests other factors besides interneuron loss play a role in the generation of seizures and the development of epilepsy. Thus, loss of local inhibition may be a necessary, but not sufficient condition for epileptogenesis.

Related Products: SSP-SAP (Cat. #IT-11)

Shopping Cart
Scroll to Top