1. Home
  2. Knowledge Base
  3. References
  4. Targeted ablation of intrinsically photosensitive melanopsin expressing retinal ganglion cells early in development alters retinal morphology within the inner plexiform layer of mice

Targeted ablation of intrinsically photosensitive melanopsin expressing retinal ganglion cells early in development alters retinal morphology within the inner plexiform layer of mice

Van Der List DA, Chapman B (2011) Targeted ablation of intrinsically photosensitive melanopsin expressing retinal ganglion cells early in development alters retinal morphology within the inner plexiform layer of mice. Neuroscience 2011 Abstracts 232.12. Society for Neuroscience, Washington, DC.

Summary: It has been demonstrated in adult mice, that eliminating a small subset of retinal ganglion cells expressing the photopigment melanopsin (ip-RGCs) with an immunotoxin alters the effects of light on circadian rhythms. The immunotoxin was made by conjugating the melanopsin antibody with ribosome-inactivating protein, saporin. It has also been observed that the ablation of ip-RGCs in adult mice did not alter retinal morphology. Specifically, it was found that dendrites arising from starburst amacrine cells retained their position within the inner plexiform layer (IPL) suggesting no reorganization within this synaptic layer (Goz et al. 2008). In this study, we used the same melanopsin immunotoxin (Mx) (Advanced Targeting Systems) to perform intravitreal injections into mice at postnatal day one. The animals were sacrificed at P26 and the retina fixed in 4%PFA, frozen transverse sections were then immunostained with antibodies against melanopsin, choline acetyl transferase (ChAT), calreinin, calbindin, PKC and Kv4.2. In control retinae, melanosin antibody stained ip-RGC cell bodies and dendrites stratifying in both On and Off layers of the IPL, whereas retinae treated with Mx shows a loss of melanopsin-containing cell bodies and dendrites. In control retinae, ChAT stains starburst amacrine cells with cell bodies in the RGC and INL layers and two distinct bands in the IPL. In Mx treated retinae, most starburst amacrine cells appear to be eliminated along with melanopsin RGCs. Interestingly, if there is a hint of residual melanopsin expressing dendrites remaining, there is also a ChAT expressing cell body and a hint of dendrites in the synaptic layer. In control retinae, calretinin and calbindin antibodies stain a subset of RGCs and amacrine cells and show a characteristic three-layered pattern of dendrites in the IPL. In Mx treated retinae, the calretinin and calbindin layers within the IPL are altered showing an absent or more diffuse labeling pattern in the ON and OFF bands. Antibodies against PKC (staining rod bipolar cells) and Kv4.2 (stains a subset of retinal ganglion cells) do not show an altered staining pattern. These findings suggest that the initial stratification and structural development of synaptic layers in the IPL are altered by Mx treatment.

Related Products: Melanopsin-SAP (Cat. #IT-44)