sfn2008

36 entries

Medullary circuitry regulating trigeminal motor nucleus phasic activity during rapid eye movement sleep in the rat

Anaclet C, Pedersen NP, Lu J (2008) Medullary circuitry regulating trigeminal motor nucleus phasic activity during rapid eye movement sleep in the rat. Neuroscience 2008 Abstracts 784.16/RR67. Society for Neuroscience, Washington, DC.

Summary: Rapid Eye Movement (REM) sleep or paradoxical sleep is characterized by activation of the cortical and hippocampal EEG, atonia of postural muscles (neck and limbs), and phasic movements of cranial muscles (eyes, chin, ears and whiskers). We have previously established that glutamatergic neurons of the sublaterodorsal tegmentual nucleus (SLD) play a critical role in generating postural muscle atonia during REM sleep. It has been further proposed that the SLD produces REM motor atonia by stimulating spinal inhibitory neurons, which in turn inhibit spinal motor output neurons. It is not known however whether the SLD is also involved in the regulation of tonic and phasic events of cranial muscles during REM sleep (e.g., rapid eye movement, phasic masseter activation). Previous studies have shown that the supraolivary medulla (SOM, dorsal to the inferior olive) and parvocellular reticular (PCRt) nucleus in the medullary reticular formation project to relevant cranial motor nuclei, including: the trigeminal motor nucleus (Mo5), retroabducens region, facial nucleus (Mo7) and hypoglossal nucleus (Mo12). It is therefore possible that either the SOM or the PCRt (or both) may also be involved in regulating cranial muscle activity in REM sleep. To identify the cell groups responsible for REM phasic control of cranial motor nuclei, we examined masseter muscle EMG following cell-specific lesions (anti-orexin B IgG-saporin) of the SLD, SOM or PCRt. Following two weeks of surgical recovery, we recorded the EEG, EMG (neck and masseter muscles) and EOG continuously for two days. Control rats showed significant phasic activation of the masseter muscles, in particular during the second half of REM sleep episodes. This phasic bursting pattern was similar to eye movements during REM sleep. Neither SLD nor PCRt lesions altered the phasic activity of the masseter muscles during REM sleep, although, and as previously reported, SLD lesions did produce REM without atonia in postural muscles. By contrast, lesions in the SOM eliminated phasic activation of the masseter muscles during REM and produced myoclonic twitching of neck muscles. These results indicate that the SOM is involved in the induction of phasic REM activity of masseter muscles, likely via activation of Mo5, whereas SOM projections to the spinal cord are involved in suppression of myoclonic activity of postural muscles.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Protection from dendritic atrophy with testosterone following partial motoneuron depletion: Timing and duration of treatment, functional correlates in motor activation

Coons KD, Sengelaub DR (2008) Protection from dendritic atrophy with testosterone following partial motoneuron depletion: Timing and duration of treatment, functional correlates in motor activation. Neuroscience 2008 Abstracts 556.23/CC10. Society for Neuroscience, Washington, DC.

Summary: We have previously demonstrated that partial depletion of motoneurons innervating the quadriceps muscles induces dendritic atrophy in remaining motoneurons; this atrophy can be attenuated in a dose-dependent fashion, and in both male and female rats, with testosterone (T) treatment. In the present study, we examined (1) how the timing and duration of T treatment affect its ability to attenuate induced atrophy in remaining quadriceps motoneurons, and (2) the effects of induced atrophy and T treatment on subsequent motor function in male rats. Motoneurons innervating the vastus medialis muscles were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Rats were then treated with supplemental T at different times post-saporin injection (immediately, or at 2 or 3 weeks), or for different durations (1, 2, 3, or 4 weeks) or left untreated. All T treatments consisted of subcutaneous implants designed to produce plasma titers in the normal physiological range. Following treatment, the morphology of motoneurons innervating the ipsilateral vastus lateralis muscles was examined using retrograde labeling with cholera toxin-conjugated HRP. In a separate set of rats, quadriceps motoneuron activation was assessed using peripheral nerve recording. Motoneuron morphology and motor activation were also assessed in a group of untreated normal males. Partial motoneuron depletion resulted in dendritic atrophy in remaining quadriceps motoneurons. Treatment with T attenuated this atrophy, but in a time-sensitive manner. Four weeks of T treatment (delivered immediately post-saporin), or two weeks of T treatment (after a delay of two weeks post-saporin) were both effective in attenuating induced dendritic atrophy. However, dendritic atrophy in animals with immediate T treatment of shorter durations or longer delays in the start of treatment was comparable to that of animals who received no supplemental T. Consistent with the morphological changes, partial motoneuron depletion in otherwise untreated males resulted in deficits in motor activation: activation of quadriceps motoneurons required greater stimulus intensities and resulted in decreased amplitudes of motor nerve activity. Importantly, just as observed for dendritic morphology, these changes were attenuated by treatment with supplemental T. These results demonstrate that the neuroprotective effect of T on motoneuron morphology is more dependent on the timing of treatment than on its duration, and also provide a functional correlate of the morphological effects of that treatment, further supporting a role for T as a neurotherapeutic agent in the injured nervous system.

Related Products: CTB-SAP (Cat. #IT-14)

Changes in energy metabolism after ventrolateral preoptic lesions in rats

Ramalingam V, Fuller PM, Lu J, Saper CB (2008) Changes in energy metabolism after ventrolateral preoptic lesions in rats. Neuroscience 2008 Abstracts 586.14/SS47. Society for Neuroscience, Washington, DC.

Summary: The ventrolateral preoptic area (VLPO) is critically involved in the regulation of sleep. For example, lesions of the VLPO have been reported to cause profound insomnia and sleep fragmentation in rats. We evaluated possible changes in energy metabolism and motor behaviors secondary to chronic sleep restriction in VLPO lesioned rats. Under anesthesia (chloralhydrate, 350 mg/kg, i.p.), adult male Sprague Dawley rats (n = 17) received stereotaxic injections of orexin-saporin into the VLPO and were also implanted with EEG/EMG electrodes to assess sleep-wakefulness. Food, water, and body mass measurements were collected for 60 post-lesion days. Sleep-wakefulness was recorded on post-lesion Days 20 and 50. On post-lesion Day 60, the animals were deeply anesthetized and transcardially perfused with 10% formaldehyde. The brains were removed and processed for histological verification of the lesion site. VLPO lesions produced a decrease (34%) in non rapid eye movement sleep (NREM) and a decrease in NREM sleep bout duration (115 ± 5 sec in the VLPO lesioned rats Vs 133 ± 2 in control rats, P < 0.01). The VLPO lesioned animals also exhibited increased food intake when compared to the age-matched controls (0.45 ± 0.004 grams per gram of lean body mass Vs 0.39 ± 0.01 grams per gram of lean body mass, P = 0.05). Food intake (r = 0.90, P<0.001), but not water intake was positively correlated with the amount of sleep loss. Although the weight gain in the VLPO lesioned rats was not statistically different from the controls, it was negatively correlated with the amount of sleep loss in those animals (r = 0.51, P = 0.05). Although the VLPO lesioned animals balanced on the rotatrod for 25% less time than the controls, this did not reach statistical significance, perhaps because the variance was so high in both groups (87 ± 23 seconds Vs 116 ± 25 sec in control rats, P>0.05). The close correlation of sleep loss with changes in food intake and body weight after the VLPO lesions suggests that the increased feeding but lower body weight may be due to the sleep loss, rather than a consequence of damaging neurons adjacent to the VLPO, which would not correlate with sleep loss.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Ventrolateral periaquaductal gray (vlPAG): Key area for REM sleep propensity

Thankachan S, Kaur S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ (2008) Ventrolateral periaquaductal gray (vlPAG): Key area for REM sleep propensity. Neuroscience 2008 Abstracts 586.3/SS36. Society for Neuroscience, Washington, DC.

Summary: In an effort to determine how loss of hypocretin/orexin (HOX) increases REM sleep we have used the neurotoxin, hypocretin-2-saporin (HCRT2-SAP), to lesion HOX receptor bearing neurons. Our efforts have focused on the pons (Blanco-Centurion et al., EJN 19:2741, 2004) since REM sleep is generated from there. Here, we investigate the vlPAG, a region where muscimol robustly increases REM sleep in cats (Sastre et al., Neuroscience, 74:415, 1996), and where HOX might activate GABA neurons that inhibit REM sleep. Lesion of vlPAG neurons with HCRT2-SAP should increase REM sleep. HCRT2-SAP (16.5ng/23nl) or saline (23nl; 0.9%) was injected (glass pipette; isofluorane anesthesia) to the vlPAG area in hypocretin/orexin null mice (HOX null) and in GAD-GFP mice [TgN(GadGFP)45704Swn; to visualize the GABA neurons]. Sleep was recorded 15th and 16th days after the lesion (12:12LD cycle). vlPAG lesion (n=5) significantly (+48.19%) increased REM sleep at night in HOX null mice compared to saline treated HOX null mice (n=7); REM sleep during the day was not changed. Over the 24h period REM sleep was significantly increased (+18.78%). However, cataplexy did not increase. In the GAD-GFP mice vlPAG lesions (n=8) also significantly increased REM sleep at night (+79.4%) compared to saline controls (n=8). The vlPAG lesions caused a significant increase in the number of short bouts (<40sec) of wake, NREM and REM sleep during both day and night. HOX null mice already have highly fragmented sleep, and increased REM sleep at night. Since vlPAG lesions produced a greater sleep fragmentation and increased REM sleep even further suggests that the vlPAG represents a key area, downstream of HOX neurons, in gating REM sleep propensity.

Related Products: Orexin-B-SAP (Cat. #IT-20)

The substantia nigra and the control of sleep

Lai YY, Hsieh KC, Nguyen D, Siegel JM (2008) The substantia nigra and the control of sleep. Neuroscience 2008 Abstracts 586.9/SS42. Society for Neuroscience, Washington, DC.

Summary: It has been established that the substantia nigra (SN) is involved in the control of motor activity. However, its role in the regulation of sleep remains unclear. We have previously found that NMDA lesions in the SN suppress sleep in the cat. A recent study demonstrated that lesions of the SN by hypocretin2-saporin result in severe insomnia in the rat. Thus, we hypothesized that activation of the SN by application of either excitatory transmitter analogs/agonists or GABA receptor blockers would induce sleep. Hypocretin had been reported to exert an excitatory effect on SN neuronal activity. The SN receives dense projections from hypocretin neurons. In the current study, we investigated whether microinfusion of hypocretin into the SN would modulate sleep and wakefulness in freely moving rats. Adult male Sprague-Dawley rats were implanted with EEG and EMG electrodes, and a guide cannula targeting the SN. Experiments were conducted one week after the rat had been implanted. The rats were housed individually in sound-attenuated chambers in LD 12:12. Hypocretin-1 was delivered via microdialysis probes (CMA/11) at a rate of 2 μL/min. Each one-hour of hypocretin infusion (ZT4 to ZT5 in the light period) was preceded by a 2-hour baseline period of artificial cerebrospinal fluid (aCSF) infusion and was followed by a 2-hour aCSF infusion. The lower concentration of hypocretin-1 (36 μM, n=2) reduced wakefulness by 19% ± 9.5% and increased slow wave sleep (SWS) by 12.8% ± 2.3% of the baseline level. The higher concentration of hypocretin-1 (72 μM, n=3) reduced wakefulness by 30.5% ± 16.4% of the baseline level and produced an increase in both SWS and REM sleep, by 10.2% ± 2.2% and 63.7% ± 26.6% respectively. The increased sleep induced by both concentrations of hypocretin were also observed in the first post-infusion hour. In conclusion, we found that hypocretin-1 has a sleep-promoting effect in the SN. Our previous study showed that hypocretin (orexin) neurodegeneration occurred in Parkinson’s disease patients. This finding suggests that sleep difficulties in Parkinson’s disease patients may result from a combination of lesions in the SN and the secondary effects of the loss of hypocretin neurons.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Effects of cholinergic deafferentation of medial, prefrontal cortex on a cross-modal divided attention task

Carter ES, Newman LA, Galler JR, Mcgaughy J (2008) Effects of cholinergic deafferentation of medial, prefrontal cortex on a cross-modal divided attention task. Neuroscience 2008 Abstracts 590.6/TT58. Society for Neuroscience, Washington, DC.

Summary: Previous research has shown that cholinergic lesions of the nucleus basalis magnocellularis impair cross-modal divided attention (Turchi and Sarter 1997). Cholinergically lesioned rats showed increased response latencies relative to sham-lesioned rats if required to divide attention but did not differ from sham-lesioned rats when tested in a focused attention condition. In the present study, the effects of selective cholinergic depletion of the medial, prefrontal cortex were assessed in the same cross-modal divided attention task (CMDAT). Male, Long-Evans rats were trained on one set of conditional response rules for visual stimuli and another for auditory stimuli. In the CMDAT, rats received 20 trials of either auditory or visual stimuli followed by twenty trials of the alternate modality (focused attention). Within the same session rats received 60 trials of a randomized sequence of all possible stimuli (divided attention). These trials were followed by two additional blocks of focused attention (20 trials/block) so the trial block sequence was Focused Attention 1 (FA1): Divided Attention (DA) : Focused attention 2 (FA2). Subjects received infusions of 192 IgG saporin (pACh-LX) or its vehicle (SHAM-LX) to the prelimbic cortex. Response latencies for all subjects were longer under conditions of divided attention when performance was compared to the first block of focused attention trials. However in pACh-LX rats response latencies in the second block of focused attention trials were longer than in the divided attention trials. The slowed performance in the FA2 block may suggest cognitive fatigue after performing the divided attention trials or may be due to the effects of prolonged time on task. To address this question, a novel sequence of trials DA : FA1 : FA2 was tested. This session showed no difference in response latencies across blocks in either group. The lack of increased response latencies in FA2 suggests the effect in the standard task is related to cognitive fatigue after completion of the DA block and prolonged time on task. The accuracy of pACh-LX rats was decreased in the divided attention block relative to SHAM-LX rats in this block and relative to pACh-LX rats’ own performance in the DA block of the standard task. This loss of accuracy with decreased latency suggests that lesioned rats show a cost of divided attention if no focused attention blocks precede divided attention testing. These data support the hypothesis that cholinergic afferents to the prefrontal cortex mediate divided attention and a loss of these afferents exacerbates cognitive fatigue.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Effects of lesions of three downstream targets of orexin/hypocretin neurons does not support the “flip-flop switch” model

Blanco-Centurion CA, Shiromani PJ (2008) Effects of lesions of three downstream targets of orexin/hypocretin neurons does not support the “flip-flop switch” model. Neuroscience 2008 Abstracts 586.2/SS35. Society for Neuroscience, Washington, DC.

Summary: Hypocretin (HCRT) neurons heavily innervate the cholinergic neurons in the basal forebrain (BF), histamine neurons in the tuberomammillary nucleus (TMN) and the noradrenergic locus coeruleus (LC) neurons, three populations that have traditionally been implicated in arousal. Based on the innervation HCRT neurons may regulate arousal by driving these downstream arousal neurons. Here we directly test this hypothesis by simultaneously lesioning these neurons using three saporin-conjugated neurotoxins. Forty four adult male Sprague-Dawley rats received stereotaxically (under anesthesia) delivered microinjections of three different saporin-conjugated neurotoxins as follows: HCRT2-saporin (250 ng/L in 0.25 µL) to lesion TMN neurons; anti-DBH-saporin (1 μg/μL in 0.25 μL) to destroy noradrenergic LC neurons; and 192-IgG-saporin (2 μg/μL ICV; 3μL) to kill the BF cholinergic neurons. Control rats were injected with pyrogen-free saline solution. Rats that had triple lesion the neuronal loss was as follows: -89.2% of ChAT-BF, -75.4% of ADA-TMN and -93.3% of DBH-LC). Surprisingly, in these rats three weeks after lesion the daily levels of wake were not changed. However, rats with lesions of two (ChAT+LC) or three (Chat+TMN+LC) neuronal populations had fewer arousals (<40sec) and a more stable sleep architecture (fewer transitions between states) compared to non-lesioned saline rats. These results are contrary to predictions of the “flip-flop” model. From these data and evidence from knockout mice, we hypothesize that the LC, histamine TMN, and BF cholinergic neurons serve to rapidly awaken a sleeping brain, and with it turn on cognitive function, attention, vigilance, and if necessary the “flight-or-fight” response. Hyperactivity of these neurons may underlie the hyperarousal in PTSD.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Selective cholinergic lesions of the nucleus basalis magnocellularis disrupt attention in appetitive trace conditioning

Butt AE, Kinney-Hurd BL, Flesher MM, Amodeo DA, Horn LR, Greenfield V, Lladones R, Hernandez G, Loson L (2008) Selective cholinergic lesions of the nucleus basalis magnocellularis disrupt attention in appetitive trace conditioning. Neuroscience 2008 Abstracts 686.14/SS65. Society for Neuroscience, Washington, DC.

Summary: Pavlovian trace conditioning, but not delay conditioning, is a form of declarative memory that requires attention and depends on the medial prefrontal cortex and hippocampus. We have previously shown that selective lesions of the cholinergic basal forebrain projections to the neocortex and to hippocampus disrupt trace conditioning but not delay conditioning. The current experiment examines the contribution of the cortical cholinergic projections of the nucleus basalis magnocellularis (NBM) to the behavioral impairments previously observed following complete basal forebrain lesions involving both the NBM and the hippocampally-projecting medial septum (MS). We hypothesized that selective lesions of the cholinergic NBM neurons would disrupt trace conditioning in a manner similar to that observed following basal forebrain lesions. Additionally, because cholinergic modulation of prefrontal cortex mediates attention in other tasks, we hypothesized that increasing demands on attention in trace conditioning would exacerbate NBM lesion-induced impairments. Rats with bilateral 192 IgG-saporin lesions of the NBM and sham lesion control animals were tested in the trace conditioning paradigm either in the presence or absence of an attention-demanding visual distractor (intermittent, unpredictable flashing light). Rats received 60 trials per day for 10 days, where each trial consisted of a 10 s white noise CS, followed 10 s later by the delivery of a sucrose pellet unconditioned stimulus (US). Conditioned responding was assessed by measuring approach to the food cup. Approach during the CS itself was considered to be non-adaptive, while approach during the trace interval was classified as adaptive responding. Contrary to our hypothesis, results showed that NBM lesions failed to impair acquisition of trace conditioning in the absence of additional attentional demands. These findings suggest that the trace conditioning impairment previously observed following complete basal forebrain lesions were due either to damage to the hippocampally-projecting MS or to a cumulative effect of combined NBM and MS damage. The presence of the visual distractor, however, disrupted acquisition performance in the current experiment as hypothesized. The NBM lesion group in the distracted condition showed excessive non-adaptive responding during CS presentation as compared to controls. The increased attentional load caused by the visual distractor appears to have caused a disinhibition of non-adaptive responding in the NBM lesion group. These results suggest that cholinergic modulation of neocortex is involved in mediating attention during trace conditioning.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Unilateral lesions of lateral hypothalamic orexin neurons impair surprise-induced enhancements of learning

Holland PC, Angeli N, Lasseter H, Wheeler DS (2008) Unilateral lesions of lateral hypothalamic orexin neurons impair surprise-induced enhancements of learning. Neuroscience 2008 Abstracts 387.16/SS63. Society for Neuroscience, Washington, DC.

Summary: Recent evidence indicates that hypothalamic orexin (hypocretin) neurons are importantly involved in arousal, aspects of learned motivational function, and the cholinergic mediation of sustained attention and the enhanced detection of weak but significant cues. Here we examined the role of these neurons in the modulation of attention in the associative learning of rats. The surprising omission of an expected event can enhance attention to cues present at the time of surprise, and hence facilitate subsequent learning about those cues. In previous research, we showed that circuitry including the amygdala central nucleus (CeA), the substantia nigra pars compacta, cholinergic neurons in the substantia innominata/nucleus basalis, and portions of the medial prefrontal and posterior parietal cortex, form a network essential for this surprise-enhanced learning. In the present study, rats received orexin-saporin lesions of the lateral hypothalamus (LH) in one hemisphere and ibotenic acid lesions of CeA in the other. Because most projections between LH and CeA are ipsilateral, this combination of lesions functionally disconnects CeA from LH orexin neurons. Rats in three control groups received unilateral lesions of LH or CeA (with sham lesions of the other region) or sham lesions of both regions. The rats were then trained in a task in which attention was manipulated by shifting a predictive relation between two cues. First, all rats received serial light-tone pairings, half of which were followed by food. Next, for half of the rats in each lesion condition the tone was omitted on nonreinforced trials, whereas the remaining rats continued to receive the same light-tone trials as before. Finally, attention to the light was assessed by measuring the rate of learning a new light-food relation. If the rats were surprised by the omission of tone during the previous phase, then attention to the light would be enhanced, resulting in faster acquisition of light-food conditioning. Consistent with previous findings, sham-lesioned rats and rats with unilateral CeA lesions showed this surprise-induced enhancement. By contrast, rats with unilateral LH lesions showed no such enhancement of learning, but otherwise performed comparably to controls. Notably, damage to CeA contralateral to the LH damage produced no additional impairment. Thus, LH orexin neurons play an important role in the surprise-induced enhancement of attention and learning, but not solely by their interactions with CeA.

Related Products: Orexin-B-SAP (Cat. #IT-20)

A synergistic role for GABAergic and cholinergic neurons of the medial septum in spatial reference memory processing: assessment with the Morris water-maze and a novel double-H maze in rats

Lecourtier L, Leroux E, Cosquer B, Cassel JC (2008) A synergistic role for GABAergic and cholinergic neurons of the medial septum in spatial reference memory processing: assessment with the Morris water-maze and a novel double-H maze in rats. Neuroscience 2008 Abstracts 389.10/TT38. Society for Neuroscience, Washington, DC.

Summary: The medial septum – from which GABAergic and cholinergic neurons project to the hippocampus – might be one of the key structures involved in hippocampal-dependent spatial memory processing. Indeed, lidocaine-induced septal inactivation disrupts encoding and retrieval, but not consolidation of a spatial memory in the water maze. Furthermore, the activation of septal 5-HT1A receptors prevents encoding but neither immediate consolidation nor retrieval of such a memory. As i) 5-HT1A receptors are located on most GABAergic and a significant part of cholinergic neurons of the medial septum, and ii) highly selective cholinergic lesions in the medial septum weakly affect spatial learning, it is possible that normal spatial memory processing depends on a cooperation between cholinergic and GABAergic neurons of this region. To address this possibility using selective lesions, 192 IgG-Saporine (IgG group) or Orexine-Saporine (OREX group) was infused into the septum to damage cholinergic or GABAergic neurons, respectively. In a third group (IgG/OREX group), both lesions were combined. Sham-operated rats were used as controls. The lesion effects were assessed on locomotor activity and on acquisition/retrieval of two water-maze tasks, the Morris maze and the double-H maze. In separate groups, retrieval was tested at three post-acquisition intervals in the Morris maze, namely 1, 5 and 25 days, and two post-acquisition periods in the double H maze, namely 5 and 25 days. Only the combined lesion resulted in nocturnal hyperactivity. In the Morris water-maze, at 25 days, there was no retrieval, whatever the group; whereas at the 1-day delay all groups retrieved the platform, at the 5-day delay, IgG and OREX rats showed normal performance while IgG/OREX rats were impaired. In the double-H maze, at the 5-day delay all groups remembered the platform location. These effects will be compared to those found at the 25-day delay (experiment currently running). Our data show that the GABAergic and cholinergic neurons of the septum synergistically contribute to the regulation of hippocampal-dependent (declarative-like) spatial memory processing.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top