sfn2005

33 entries

Cholinergic lesions produce selective effects on cognitive performance in rats

Gibbs RB, Fitz NF, Johnson DA (2005) Cholinergic lesions produce selective effects on cognitive performance in rats. Neuroscience 2005 Abstracts 881.1. Society for Neuroscience, Washington, DC.

Summary: Cholinergic projections from the basal forebrain play an important role in cognitive processes; however, the degree to which damage to specific projections contributes to impairment within specific cognitive domains is unclear. In the present study, cholinergic projections to the hippocampus and/or frontal cortex of young adult, ovariectomized Sprague-Dawley rats were selectively destroyed by injecting 192 IgG-saporin (SAP) into the medial septum (MS), the nucleus basalis magnocellularis (NBM), or both the MS and NBM (MSNBM). Controls received injections of sterile saline. Animals were then tested for learning and memory impairments using a series of tasks, including a delayed matching-to-position (DMP) T-maze task, an operant configural association (CA) negative patterning task, and a 12-arm radial maze (RAM) task, administered in that order. Results reveal different effects of the lesions on the different tasks. For example, SAP lesions of the MS, as well as combined lesions of MS and NBM significantly impaired acquisition the DMP task; however, once animals had reached criterion, cholinergic lesions did not alter decrements in performance produced by increasing the intertrial delay. In contrast, SAP lesions of the MS had no significant effect on acquisition of the CA task, although combined lesions of MS and NBM produced a trend toward impairment on the CA task among animals with the most severe cholinergic depletion. Likewise, combined lesions significantly impaired acquisition of the RAM task. In general, combined lesions produced greater impairments than lesions of either the MS or NBM alone. Significant correlations between acquisition of the DMP and RAM tasks and ChAT activity in the hippocampus, frontal cortex, and occipital cortex, were also detected. These data demonstrate that removal of cholinergic projections to the hippocampus and frontal cortex produce cognitive impairments that are lesion specific as well as task dependent.

Related Products: 192-IgG-SAP (Cat. #IT-01)

192 IgG-saporin lesions to the nucleus basalis magnocellularis (NBM) do not disrupt the retention of learning set formation

Bailey AM, St Germain J, Tyler MM (2005) 192 IgG-saporin lesions to the nucleus basalis magnocellularis (NBM) do not disrupt the retention of learning set formation. Neuroscience 2005 Abstracts 881.2. Society for Neuroscience, Washington, DC.

Summary: Male Long Evans rats (Rattus norvegicus) were used to investigate the role of the nucleus basalis magnocellularis (nBM) in the retention of a previously acquired learning set rule. All rats had successfully acquired an olfactory discrimination learning set by demonstrating above chance performance on trial 2 across 42 olfactory discrimination problems. Following the initial acquisition of learning set, animals were given bilateral 192 IgG-saporin (0.375 µg/µl; 0.4 µl per hemisphere) lesions to the nBM. Assessment of open field activity indicated that there were no group differences in general activity levels or emotionality before or after surgery. Retention of learning set was tested 10 days following surgery with 20 novel, odor-unique olfactory discrimination learning set problems. Control and nBM lesioned animals performed significantly higher than expected by chance on trial 2 of the novel problems suggesting retention of a learning set hypothesis. However, rats with 192 IgG-saporin nBM lesions performed learning set at a significantly lower level than control animals as measured by trial 2 percentage correct. Results suggest that damage to the nBM disrupts general performance on a cognitively demanding task, but does not block retention of the learning set rule.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Facilitation of conditioned odor aversion by entorhinal cortex lesion in the rat is reversed by cholinergic lesion in the basal forebrain

Ferry B, Herbeaux K, Petoukhova-Traissard N, Galani R, Cassel J, Majchrzak M (2005) Facilitation of conditioned odor aversion by entorhinal cortex lesion in the rat is reversed by cholinergic lesion in the basal forebrain. Neuroscience 2005 Abstracts 881.6. Society for Neuroscience, Washington, DC.

Summary: In the rat, conditioned odor aversion (COA) corresponds to the avoidance of an odorized-tasteless solution (conditioned stimulus, CS) previously associated with toxicosis (unconditioned stimulus, US). Evidence suggests that the entorhinal cortex (EC) is part of the neural substrate involved in the acquisition of COA. Indeed, we showed that EC lesion facilitated CS-US association and rendered it resistant to lengthening of the interstimulus interval (ISI). This facilitation phenomenon might correspond to a lengthening of the olfactory CS memory trace, rendering the association with the subsequent US possible. Because i) all our EC-lesioned rats showed septo-hippocampal cholinergic sprouting, and ii) scopolamine infusions into the dentate gyrus reversed performance in EC-lesioned but not in sham-operated rats in a spontaneous olfactory preference test, we suggested that COA facilitation resulted from enhanced cholinergic activity in the hippocampus. In order to test this hypothesis, we studied the effect of a cholinergic basal forebrain lesion combined to an EC-lesion during COA. Male Long-Evans rats subjected to bilateral EC lesions and intraventricular infusions of the selective toxin 192 IgG-saporin received odor-US pairings with a short or long ISI. Results showed that sham-lesioned rats displayed COA with the short, but not the long ISI, whereas EC-lesioned rats showed COA with both ISI. More interestingly, rats with double lesions did not differ from controls, suggesting that the cholinergic lesion suppressed the effect of EC-lesions. These results strongly suggest that the facilitative effects observed in EC-lesioned animals during COA are due, at least in part, to the septo-hippocampal cholinergic sprouting elicited by the EC lesion. Moreover, they suggest that the hippocampal cholinergic system is involved in the control of memory processes underlying the association between the olfactory CS and the US during acquisition of COA.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Time-dependent neurotrophins effect on cholinergic denervation and hippocampal sympathetic ingrowth following 192 IgG-saporin lesioning of medial septum

Kolasa K, Parsons D, Harrell LE (2005) Time-dependent neurotrophins effect on cholinergic denervation and hippocampal sympathetic ingrowth following 192 IgG-saporin lesioning of medial septum. Neuroscience 2005 Abstracts 1004.4. Society for Neuroscience, Washington, DC.

Summary: In rat,injection of specific cholinotoxin,192 IgG-saporin into the medial septum results not only in a selective denervation of hippocampus(CD),but in an ingrowth of peripheral sympathetic fibers,originating from the superior cervical ganglion,into the hippocampus.This process has been termed hippocampal sympathetic ingrowth(HSI).A similar process,in which sympathetic noradrenergic axons invade hippocampus,may also occur in Alzheimer’s disease(AD). The severity of cognitive decline in AD patients has been linked to multiple factors including cholinergic and neurotrophic factors and their receptors,which undergo selective alterations throughout the progression of AD.It is known that the sites of synthesis of NGF(nerve growth factor),BDNF(brain derived-neurotrophic factor)and LIF (leukemia inhibitory factor)in rat septo-hippocampal system are predominantly hippocampal neurons.By using 192 IgG-saporin we have been able to mimic some of the cardinal features of AD e.x.cholinergic denervation and hippocampal sympathetic ingrowth and to study their effect on neurotrophins in dorsal hippocampus.Thus,2,8,and 12 weeks after injection of 192 IgG-saporin we measured NGF, BDNF and LIF protein and mRNA expression using Western blot and RT-PCR techniques, respectively.Choline acetyltransferase activity(ChAT) and norepinephrine(NE) concentration was also detected. Significant alterations were found in NGF and LIF protein expression(decrease at 8 weeks and increase at 12 weeks post lesions)in HSI group. Significant decrease of BDNF(mature form) protein expression was found in CD group over whole period of time. There was significant decrease found in BDNF mRNA expression in CD,with normalization in HSI group 12 weeks post lesions. Results of the study suggest that neurotrophins are affected by cholinergic denervation and may play an important role in regulation and development of HSI,which might be a beneficial phenomenon for restoration at least some of cognitive function.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Cholinergic therapy does not rescue spatial learning deficits induced by ICV injection of 192 IgG-saporin

Lohals R, Veng LM (2005) Cholinergic therapy does not rescue spatial learning deficits induced by ICV injection of 192 IgG-saporin. Neuroscience 2005 Abstracts 653.5. Society for Neuroscience, Washington, DC.

Summary: The cholinergic hypothesis states that central cholinergic dysfunction is responsible for age-dependent cognitive decline. To model this in rats, we induced cholinergic basal forebrain loss the neurotoxin IgG192-saporin (SAP). Following ICV infusion of 2.5 or 5 microgram (ug) SAP, or saline, rats were tested in the radial 12-arm water maze (RAWM), a spatial learning and memory task. While saline sham or 2.5 ug SAP lesioned rats showed normal learning over 4 trials in the RAWM, 5 ug SAP rats were impaired. However, when trained over 20 trials, 5 ug SAP rats eventually attained the same level of performance as 2.5 ug SAP or saline sham rats, and 28 days later all rats showed intact memory for this platform location. In the open field, 5 ug SAP rats failed to habituate. However, SAP or saline sham lesioned rats did not differ in basal activity, rotarod, or visually cued RAWM performance. SAP lesion resulted in severe depletion of ChAT activity in hippocampus and cortex, which significantly correlated with learning impairment in the RAWM. In a second experiment, we used 5 ug ICV SAP to investigate the effect of cholinergic therapy on SAP-induced spatial learning deficits in the RAWM. However, neither galantamine (0.30, 1.25, 5.0 mg/kg) nor RJR-2403 (0.08, 0.31, 1.25 mg/kg) could reverse the SAP induced deficit in RAWM learning. In conclusion, we found that spatial learning in the RAWM was consistently impaired following severe (5.0 ug SAP) cholinergic basal forebrain lesion in rats. This learning deficit was not confounded by general behavioral disturbances. However, with excessive training SAP lesioned rats could learn and later recall spatial information, suggesting that recall is intact in cholinergic lesioned animals. Severe SAP lesion also impaired habituation in an open field and this was not due to hyperactivity. Finally, treatment with galantamine and RJR-2403 did not alleviate the cognitive deficit induced by the SAP lesion, likely due to the severity of cholinergic depletion.

Related Products: 192-IgG-SAP (Cat. #IT-01)

The potential role of the corticopetal cholinergic system in mediating anxiogenic states in rats

Knox DK, Berntson GG (2005) The potential role of the corticopetal cholinergic system in mediating anxiogenic states in rats. Neuroscience 2005 Abstracts 659.10. Society for Neuroscience, Washington, DC.

Summary: Previous research has demonstrated that the corticopetal cholinergic system is important in mediating defensive tachycardia which suggests that this system may be important in mediating aversive states such as fear and anxiety. The aim of this study was to determine how corticopetal cholinergic lesions affect behavioral models of aversive states. The cholinergic immunotoxin 192 IgG saporin (ATS, San Diego CA) was infused into the nucleus basalis of rats in order to accomplish corticopetal cholinergic lesions. Lesioned and control rats were then evaluated on three behavioral models of anxiogenic states: behavior in the elevated plus maze, behavioral suppression induced by classical and contextual fear conditioned stimuli, and heightened arousal induced by a footshock. Lesioned and control rats did not differ on any anxiogenic behavioral measure in the elevated plus maze indicating that corticopetal cholinergic lesions did not affect behavioral indices of unconditional fear. In contrast, both classical and contextual fear conditioned stimuli induced behavioral suppression in control rats, and these effects were attenuated in lesioned rats indicating that corticopetal cholinergic lesions attenuated conditioned fear. Lastly, heightened arousal was evaluated in lesioned and control rats by monitoring behavioral suppression and changes in the electroencephalogram (EEG) over the retrosplenial cortex after a footshock. The footshock induced decreases in the integral area of the delta band and increases in the integral area of the theta band of the EEG in control rats. Both of these effects were attenuated in lesioned rats. In addition, changes in delta and behavioral suppression induced by the footshock were significantly correlated. These results indicated that corticopetal cholinergic lesions attenuated the heightened arousal induced by an aversive event. Taken together, the results of the study suggest that the corticopetal cholinergic system may be important in mediating components of anxiogenic states.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Characterization of an immunotoxin model of Parkinson’s disease in mice

Stead S, Trottier N, Doering LC (2005) Characterization of an immunotoxin model of Parkinson’s disease in mice. Neuroscience 2005 Abstracts 664.9. Society for Neuroscience, Washington, DC.

Summary: The primary event underlying the motor deficits of Parkinson’s disease (PD) is degeneration of neurons in the nigro-striatal system. The most widely employed laboratory rodent models of Parkinson’s are the neurotoxin 6-hydroxydopamine (6-OHDA) model that causes acute degeneration of the dopamine neurons in the substantia nigra (SN) and the MPTP mouse model. To date, there is no single model which accurately simulates the pathogenic, histological, biochemical and clinical features relevant for the investigation of PD. Toxins conveyed by axonal transport can be used to make selective lesions in the central nervous system. As previously shown in rats (Wiley et al., Cell. Mol. Biol., 2003), we have found that selective degeneration of the SN can be induced with an immunotoxin consisting of the highly active ribosome inactivating protein Saporin linked to an antibody to the dopamine transporter. A unilateral stereotaxic injection of anti-DAT-Saporin (0.25ug/2ul and 0.05ug/2ul) into the striatum of young (6-8 weeks old) female C57BL6 mice causes a progressive reduction in the number of DA neurons in the SN in comparison to the non-lesioned hemisphere and in various controls. Furthermore, in parallel to the immunohistochemical dopamine neuron death, the animals display a pronounced circling behaviour when challenged with apomorphine (3mg/kg). We are currently examining the affected brain sections for inclusion bodies and changes in astrocytes. This model exhibits the selective deterioration of the nigro-striatal system that occurs in Parkinson’s disease and provides a system to intervene at various stages of dopamine neuron loss and evaluate the effectiveness of stem cell therapy.

Related Products: Anti-DAT-SAP (Cat. #IT-25)

Testosterone treatment prevents deficits in motor activation caused by partial loss of motoneurons

Fargo KN, Sengelaub DR (2005) Testosterone treatment prevents deficits in motor activation caused by partial loss of motoneurons. Neuroscience 2005 Abstracts 672.8. Society for Neuroscience, Washington, DC.

Summary: In male rats, motoneurons of the spinal nucleus of the bulbocavernosus (SNB) project to the bulbocavernosus and levator ani muscles (BC/LA). The SNB system is dependent on androgens for its development, adult morphology, and function. We have previously demonstrated that unilateral depletion of SNB motoneurons induces atrophy of dendrites and somata in contralateral SNB motoneurons, and that this atrophy is prevented by treatment with exogenous testosterone. In the present experiment, we tested the hypothesis that this neuroprotective effect of testosterone on the morphology of SNB motoneurons is accompanied by a neuroprotective effect on the electrophysiological function of the system. We unilaterally depleted right-side SNB motoneurons by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some of the saporin-injected rats were castrated and immediately given exogenous testosterone in subcutaneous Silastic capsules designed to produce testosterone titers in the high-normal physiological range. Four weeks later, animals were anesthetized and spinally transected. A stimulating electrode was placed on the left L6 dorsal root, which carries motor afferents from the BC/LA, and a recording electrode was placed on the motor branch of the left pudendal nerve, which carries SNB motoneuron axons to the BC/LA. Both nerves were then severed distal to electrode placement, and recruitment curves were generated by stimulating through the entire range of effective intensities. Consistent with our previously reported morphological changes, unilateral motoneuron depletion resulted in an attenuation of the recruitment of motoneurons in the contralateral SNB, and this was completely prevented by treatment with exogenous testosterone. This result provides a functional correlate to the neuroprotective effects of testosterone treatment on SNB morphology following unilateral motoneuron depletion, further supporting a role for testosterone as a neurotherapeutic agent in the injured nervous system.

Related Products: CTB-SAP (Cat. #IT-14)

Immunolesions of glucoresponsive projections to the arcuate nucleus alter glucoprivic feeding and luteinizing hormone secretion but not sex behavior in adult male rats

Fraley GS (2005) Immunolesions of glucoresponsive projections to the arcuate nucleus alter glucoprivic feeding and luteinizing hormone secretion but not sex behavior in adult male rats. Neuroscience 2005 Abstracts 758.7. Society for Neuroscience, Washington, DC.

Summary: Metabolic signals such as insulin, leptin and glucose are known to alter hypothalamic function. Although insulin and leptin are known to directly alter hypothalamic areas that regulate reproduction, the mechanisms by which glucose alters reproductive function are not as clear. Catecholaminergic neurons in the A1/C1 region of the hindbrain are glucose-responsive and project to the arcuate nucleus. To determine if this pathway is involved in the regulation of sex behavior and luteinizing hormone (LH) secretion, this catecholamingergic pathway was lesioned by injecting saporin conjugated to anti-dopamine-β-hydroxalase (DSAP) or unconjugated saporin (SAP) into the arcuate nucleus of adult male rats. Rats were given glucoprivic challenges then feeding and sex behaviors were observed. As was expected, the DSAP treated rats showed a significant decreased in feeding during glucoprivation (250 mg/kg 2-deoxy-D-glucose, 2DG) compared to SAP controls (p < 0.05). Glucoprivation caused a significant reduction in sex behavior (p < 0.05) in both SAP and DSAP animals equally, compared to saline treatments in either treatment group. At the end of the experiment, animals were given a final challenge with 2DG or saline, killed by decapitation and trunk blood was assayed for plasma LH levels. In SAP animals, 2DG elicited a significant decrease in plasma LH levels (p < 0.05). However, in DSAP animals there was a significant increase (p < 0.05) in plasma LH levels compared to saline-treated rats. These data indicate that the A1/C1 efferents to the ventromedial hypothalamus are involved in the glucostatic regulation of feeding behavior and LH secretion, but not sex behavior in the adult male rat.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Immunolesion of p75 NGF receptor in the mouse SCN attenuated light-induced phase shift of the circadian wheel-running rhythm

Vijayakumar S, Masood A, Smith M, Clark JP, Nelson DE, Ding JM (2005) Immunolesion of p75 NGF receptor in the mouse SCN attenuated light-induced phase shift of the circadian wheel-running rhythm. Neuroscience 2005 Abstracts 766.18. Society for Neuroscience, Washington, DC.

Summary: Mammalian circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. Alhough the SCN can orchestrate these rhythms in the absence of external cues, it is entrained to environmental cycles through the retinohypothalamic tract. Light-induced phase shifts in circadian rhythm is a classic example of short-term environmental stimuli inducing lasting changes in intracellular signals and gene expression within the SCN cells that alter the phase of the SCN pacemaker and allow entraiment. Since neurotrophins are known to mediate neural plasticity, we investigated the role of brain-derived neurotrophic factor (BDNF) on resetting the phase of the SCN both in vitro and in vivo. We used the SCN brain slice model to study the direct effect of BDNF on the circadian rhythm. Briefly, coronal hypothalamic slices containing the SCN were prepared using 129B/6 mice. The circadian rhythm of the SCN neurons in the brain slice was monitored for 2-3 days by continuously sampling the spike frequencies with single-unit extracellular electrodes. Brief microdrop applications of BDNF (10 uM) induced robust phase delays at CT 16 and phase advances at CT 22. BDNF binds to neurotrophin receptors, including the low affinity p75NTR, which is localized in the SCN. When the toxin Saporin is conjugated to the antibody against p75NTR, it selectively destroys the cells expressing the p75NTR. Three weeks after the stereotaxic injection of the mu p75-Saporin (Advanced Targeting System) into the third ventricle (1 ul over 20 min), the p75NTR immunoreactivity in the mouse SCN is abolished. Immunolesion of the p75NTR in the SCN attenuated light-induced phase delays of the wheel running rhythm at CT16. Consistent with previous findings, our results support a role for BDNF and its receptor p75NTR, in resetting the circadian rhythm of the SCN in mice.

Related Products: mu p75-SAP (Cat. #IT-16)

Shopping Cart
Scroll to Top