sfn2003

47 entries

A novel nitrate ester enhances performance in a spatial memory task in rats with forebrain cholinergic depletion

Reynolds JN, Sutherland JM, Sutherland RJ (2003) A novel nitrate ester enhances performance in a spatial memory task in rats with forebrain cholinergic depletion. Neuroscience 2003 Abstracts 626.11. Society for Neuroscience, New Orleans, LA.

Summary: Forebrain acetylcholine (ACh) depletion is associated with a variety of cognitive problems, including memory deficits. Here we evaluate the efficacy of a novel nitrate ester, GT 1061, a potential cognition enhancer, in reversing the memory deficit produced by ACh depletion. Long-Evans hooded rats were stereotaxically injected with 192-IgG-saporin intraventricularly or into basal forebrain cell regions to effect loss of cholinergic cells in the basal forebrain and depletion of cholinergic input to neocortex and hippocampus. The rats were postoperatively tested in a version of the Morris water task in which the location of the hidden platform was changed every second day. This version allows for repeated testing of new spatial learning and 24-hr memory retention. ACh depletion causes statistically reliable deficits in new learning and retention components of the task. We examined the effects of oral (0.5, 1, 5, and 10 mg/kg) and intraperitoneally injected (1, 10, 25 and 50 mg/kg) GT 1061 and donepezil oral (0.05, 0.5, 0.1, 1 mg/kg) and intraperitoneal (0.5 mg/kg) on performance of ACh depleted rats. Both oral and injected GT1061 (10 mg/kg oral, and 1 mg/kg i.p.) and donepezil improved new learning and retention performance. The improvement was especially evident during the 24-hr retention tests when GT1061 treated rats performed as well as normal rats. On this measure 10 mg/kg GT 1061 and 1 mg/kg donepezil administered orally were equipotent.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Arousal enhances delayed match to position T-maze performance independent of septo-hippocampal cholinergic projections

Fitz NF, Gibbs RB, Johnson DA (2003) Arousal enhances delayed match to position T-maze performance independent of septo-hippocampal cholinergic projections. Neuroscience 2003 Abstracts 425.17. Society for Neuroscience, New Orleans, LA.

Summary: Infusion of the selective cholinergic immunotoxin, 192 IgG-saporin (SAP) into the medial septum (MS) of rats selectively lesions cholinergic neurons projecting to the hippocampus and impairs acquisition of a delayed matching to position (DMP) T-maze task. The intent of the present study was to determine if enhanced performance associated with arousal is dependent on septo-hippocampal cholinergic projections. Male Sprague-Dawley rats received MS infusions of SAP 0.22 µg in 1µl or vehicle. Fourteen days later, animals were trained on the DMP spatial memory task. SAP and control animals were randomized into an “arousal” group that was injected with saline (IP; 1 ml/Kg) 30 min before testing each day or a “non-arousal” group that was not. SAP lesions significantly impaired acquisition of the DMP task in both the arousal and non-arousal groups. Conversely, arousal significantly enhanced acquisition in both control and SAP lesioned rats. There was no significant interaction between the effects of cholinergic lesions and arousal. These results suggest that septo-hippocampal cholinergic projections are not engaged in enhanced spatial learning mediated by arousal.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed non-match to sample task (DNMS)

McGaughy JA, Jindal M, Eichenbaum HB, Hasselmo ME (2003) Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed non-match to sample task (DNMS). Neuroscience 2003 Abstracts 425.4. Society for Neuroscience, New Orleans, LA.

Summary: Muscarinic cholinergic receptor activation in entorhinal cortex (EC) activates intrinsic depolarizing membrane currents which cause self-sustained spiking activity in single neurons (Klink and Alonso, J. Neurophys. 77, 1997). This effect may underlie delay activity and match-dependent activity changes in delayed match to sample tasks (Fransen et al., J. Neurosci. 22, 2002) and could allow accurate maintenance of novel information without dependence on synaptic modification associated with previous exposure (familiarization). Consistent with this, research in human subjects suggest that the medial temporal lobes are specifically activated during working memory for novel but not familiar stimuli (Stern, et al. Hippocampus v. 11, 2001), and cholinergic deafferentation of the rhinal cortex in non-human primates has been shown to impair memory for trial-unique (novel) stimuli (Turchi et al., SFN abstracts v. 28). The current study tests the hypothesis that cholinergic deafferentation of the EC produces impairments in working memory for novel but not familiar stimuli. Prior to surgery rats were trained in an odor DNMS task with a brief delay. After reaching asymptotic performance, rats were infused with either 192-IgG-saporin (SAP) or its vehicle into the EC (0.01 µg/µl; 1.0 µl/injection; 6 infusions/hemisphere). Rats were not impaired at any delay when tested with familiar odors but showed significant, persistent impairments when tested with novel odors. An increase in task difficulty alone was insufficient to explain these effects. These data support the hypothesis that cholinergic afferents to the EC activate cellular mechanisms of sustained spiking activity necessary for maintenance of novel but not familiar stimuli in a working memory task. Support Contributed By: NIH MH61492, MH60013, DA16454.

Related Products: 192-IgG-SAP (Cat. #IT-01)

ATS Poster of the Year Winner. Read the featured article in Targeting Trends.

192 IgG-saporin lesions of the nucleus basalis magnocellularis in rats fail to disrupt acquisition or retention of differential reinforcement of low rate responding

Butt AE, Corley S, Cabrera S, Chavez C, Kitto M, Ochetti D, Renovato A, Salley T, Sarpong A (2003) 192 IgG-saporin lesions of the nucleus basalis magnocellularis in rats fail to disrupt acquisition or retention of differential reinforcement of low rate responding. Neuroscience 2003 Abstracts 425.5. Society for Neuroscience, New Orleans, LA.

Summary: The frontal cortex has been implicated in supporting timing behavior in tests of differential reinforcement of low rate responding (DRL) in rats. DRL performance is similarly influenced by anticholinergic drugs; scopolamine interferes with DRL performance by increasing the number of nonreinforced responses and thus decreasing DRL efficiency. Because the frontal cortex receives significant cholinergic input from the nucleus basalis magnocellularis (NBM) in rats, we hypothesized that NBM lesions would disrupt DRL performance in the current experiment. Male Long-Evans rats were placed first in a DRL 10 s schedule of reinforcement before advancing to a DRL 20 s schedule. Rats received 50 trials per day for 20 consecutive days on both DRL schedules. When rats reached stable performance, they received either bilateral 192 IgG-saporin lesions of the NBM or sham lesions. Upon recovery, rats were reintroduced to the DRL 20 s task for 10 days of post-operative testing. Finally, rats were tested using a novel delay interval in a DRL 30 s task. Testing continued for 10 additional days. Results showed that the NBM lesion group showed no significant change in either the total number of responses or in DRL efficiency (reinforced responses / total responses) between pre- and post-operative DRL 20 s testing. Subsequent acquisition in the DRL 30 s task was similarly not disrupted by NBM lesions. The effectiveness of the lesions was verified by acetylcholinesterase (AChE) staining, which showed pronounced depletion of cortical AChE with normal AChE-positive staining in the hippocampus and medial septal area. These data suggest that the NBM is not critically involved in either the acquisition or retention of DRL performance.

Related Products: 192-IgG-SAP (Cat. #IT-01)

192-IgG saporin lesions of the medial septum and vertical diagonal band impair cognitive flexibility.

Fletcher BR, Baxter MG, Rapp PR, Shapiro ML (2003) 192-IgG saporin lesions of the medial septum and vertical diagonal band impair cognitive flexibility. Neuroscience 2003 Abstracts 425.8. Society for Neuroscience, New Orleans, LA.

Summary: Learning and memory remain largely intact following selective basal forebrain cholinergic lesions. By comparison, single unit recording studies have documented reliable effects of such lesions, including abnormally rigid hippocampal place fields when animals are confronted with changes in the configuration of the testing environment. The present experiment tested the prediction that cholinergic lesions of the basal forebrain would impair performance of tasks requiring cognitive flexibility. Rats received 192-IgG saporin or control vehicle injections into the medial septal nucleus and vertical diagonal band, and were tested on cued and spatial delayed match-to-place tasks in a radial arm water maze. Test sessions consisted of four sample trials in which animals searched for a cued or hidden escape platform located in a fixed position at the end of one arm (60 sec cutoff, inter-trial interval = 15 sec). A memory delay was imposed by returning rats to the home cage for a variable delay (15 sec. – 6 hrs), followed by two test trials. The lesion and control groups learned at similar rates in both versions of the task, and performed comparably on the critical test trials, independent of the length of the retention interval. However, lesioned rats were impaired during the transition from the cued to spatial variants of testing. Specifically, the lesion group made significantly more errors on an early sample trial in the spatial task, returning to the location that was previously correct during cued training. Pending histological confirmation of the extent and selectivity of the experimental lesions, this pattern of results suggests that damage to the basal forebrain cholinergic system spares spatial learning but impairs cognitive flexibility when task contingencies are changed.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Discrete lesioning of orexin (hypocretin)-containing neurons potentiates dexmedetomidine- but not pentobarbital-induced hypnosis

Nelson LE, Franks NP, Maze M (2003) Discrete lesioning of orexin (hypocretin)-containing neurons potentiates dexmedetomidine- but not pentobarbital-induced hypnosis. Neuroscience 2003 Abstracts 426.13. Society for Neuroscience, New Orleans, LA.

Summary: Introduction: Recent work suggests that anesthetics putatively modulated by the α2-adrenoceptor (e.g. dexmedetomidine (DEX)) or the GABAA receptor (e.g. pentobarbital (PTB)) elevate and depress c-Fos expression, respectively, in the orexinergic perifornical area (PeF)1. Here the hypnotic effects of DEX and PTB are assessed after selective lesion of the PeF by orexin-B conjugated to saporin (OX-SAP). Methodology: Anesthetized Fischer rats were administered stereotaxic PeF injections of saline (0.5µl/side) or OX-SAP (490ng/0.5μl/side; as described2). Loss of righting reflex (LORR) induced by DEX (150μg/kg, SC), PTB (50mg/kg, SC), and saline was tested 1 day pre- and 1, 4, 8, and 12 days post-surgery, then lesions were assessed histologically. All data are presented as means±SEMs (n=6; comparisons by unpaired t-tests and ANOVA, Newman-Keuls). Results: Bilateral PeF lesions enhanced DEX-induced hypnosis at days 8 (281.2±15.8 min; p<0.05) and 12 (322.7±15.93 min; p<0.001) as compared to naïve (234.5±9.0 min) and saline sham animals (day 8, 236.7±9.8 min; day 12, 242.8±10.80 min). In contrast, PTB-induced LORR remained unaffected at day 12 (124.8±6.8 min) relative to naïve (119.4±4.6 min) and sham (120.8±5.3 min). These results agree with previous reports that by day 12, PeF-microinjected OX-SAP induces roughly 80% cell loss2. Conclusion: The absence of a functional PeF potentiates hypnosis induced by DEX but not PTB, as perturbation of the PeF by microinjected GABAA receptor antagonist gabazine is known to 1. References: 1 Nelson et al. (2002) SfN abstract 776.14/M20; 2 Geraschenko et al. (2001) J Neurosci 21:7273-83.

Related Products: OX7-SAP (Cat. #IT-02)

Dendritic dysgenesis in midline cortical regions following selective acetylcholine and dopamine lesions in neonatal rats

Sherren N, Pappas BA (2003) Dendritic dysgenesis in midline cortical regions following selective acetylcholine and dopamine lesions in neonatal rats. Neuroscience 2003 Abstracts 457.11. Society for Neuroscience, New Orleans, LA.

Summary: Both acetylcholine (ACh) and dopamine (DA) afferents reach their cortical targets during periods of synaptogenesis, and are perfectly positioned to influence the cytoarchitectural development of cortical neurons. Thus the behavioural outcomes of these lesions may be related to the development of appropriate dendritic morphology in neurons from cortical regions involved in cognition. Previous studies have either used non-specific lesion techniques or have not examined long-term effects. We lesioned rat pups at P7 with either 600 ng of the selective immunotoxin 192 IgG-saporin, or 150 ug of 6-hydroxydopamine preceded by desmethylimipramine, or both, and aged them to four months. One squad of rats was sacrificed for neurochemistry and another was prepared for morphological analysis using Golgi-Cox stain. The ACh lesion caused a 32% decrease in choline acetyltransferase activity in the frontal/cingulate cortex and a 72% reduction in retrosplenial cortex (RSC). This was associated with reductions in total dendritic length of the apical tree of layer V pyramidal cells in the medial prefrontal cortex (mPFC), the apical tree of layer III pyramidal cells in the anterior cingulate cortex (ACC), and the basal tree of layer III pyramidal cells in RSC. The DA lesion caused a 76% reduction in DA levels in frontal/cingulate cortex and no change in RSC levels. This was associated with reductions in total dendritic length of the basal and apical trees of layer V pyramidal cells in mPFC, and the basal tree of layer III pyramidal cells in ACC. No changes in layer III pyramidal cells were noted in RSC following the DA lesion. These data demonstrate that ascending ACh and DA afferents play a vital role in the cytoarchitectural development of the cortex. This is particularly important considering that hypofunction in these systems is a characteristic feature of neurodevelopmental disorders involving mental retardation, such as Rett and Down syndrome.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Destruction of brainstem catecholamine neurons attenuates somatosympathetic reflex and responses to cholecystokinin

Neale JJ, Goodchild AK, Dampney RAL, Pilowsky PM (2003) Destruction of brainstem catecholamine neurons attenuates somatosympathetic reflex and responses to cholecystokinin. Neuroscience 2003 Abstracts 501.11. Society for Neuroscience, New Orleans, LA.

Summary: The integrity of the rostral ventrolateral medulla (RVLM) is essential for the expression of many sympathetic reflexes and the maintenance of vasomotor tone. The RVLM contains bulbospinal neurons, of which about half are catecholaminergic (C1). Destruction of bulbospinal C1 neurons leads to attenuation or abolition of the sympathetic baroreflex and chemoreflex, respectively. This study examines the effects of such destruction on blood pressure (BP), the somatosympathetic reflex and responses to intravenous (i.v) cholecystokinin (CCK) in urethane-anaesthetised, paralysed and ventilated Sprague-Dawley rats. Eighty percent of the spinally projecting C1 neurons in the RVLM were destroyed by bilateral microinjections of the immunotoxin, anti-DBH-saporin (12ng/100nl), into the intermediolateral cell column of the thoracic spinal cord (T1-2). Following treatment with the neurotoxin, systolic BP was measured for 3-5 weeks before testing the reflexes. No significant changes in systolic BP were observed. In the present study destruction of bulbospinal C1 neurons attenuated the baroreflex, replicating the findings of Schreihofer and Guyenet (2000, Am J Physiol 279:R729-R742). Activation of the somatosympathetic reflex by electrical stimulation of the tibial nerve normally elicits two peaks in averaged splanchnic sympathetic nerve activity. Following destruction of C1 neurons, the threshold voltage was reduced and the second peak was either markedly attenuated or abolished at two times threshold voltage. Intravenous injection of CCK (1, 10 and 100mg/kg) elicited depressor and sympathoinhibitory responses that were significantly reduced following destruction of bulbospinal C1 neurons. These results demonstrate a key role of bulbospinal C1 neurons in the somatosympathetic reflex and the sympathetic responses to i.v CCK but not in the tonic control of blood pressure.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Tuberomammillary nucleus lesion decreases the anticipatory events induced by restricted feeding in rats

Recabarren MP, Valdes JL, Seron-Ferre M, Torrealba F (2003) Tuberomammillary nucleus lesion decreases the anticipatory events induced by restricted feeding in rats. Neuroscience 2003 Abstracts 510.19. Society for Neuroscience, New Orleans, LA.

Summary: Our previous studies indicate that the histamine-containing neurons of the tuberomammillary nucleus (TMN) become active in anticipation to feeding time in rats under a restricted feeding schedule. To assess the role of the TMN in this anticipatory activity in rats, we lesioned the TMN bilaterally with stereotaxic injections of 50ng ORX-SAP (Advanced Targeting System, CA). We analyzed the locomotor activity, core temperature and the feeding frequency exhibited by these animals during a restricted feeding protocol, where food was available between 10:00 h and 12:00 h for at least 2 weeks. Rats were implanted in the abdominal cavity with telemetric sensors (Minimitter, OR) to measure locomotor activity and core temperature. During the whole experiment rats were maintained in individual cages and under controlled photoperiod of 12 hours light and 12 hours dark, light were on at 07:00 h. We analyzed the 3 hours preceding food arrival. We checked the extent of TMN destruction by immunostaining the brain sections with antibody against adenosine diaminase (ADA), which colocalize with histaminergic neurons in the TMN. Control rats were subjected to the same procedures except for the injection of the ORX-SAP toxin. Results: Lesion rats showed a significant decrease in the number of ADA-ir neurons in the TMN, as well as a decreased anticipatory activity under restricted feeding in comparison with control rats. Lesion rats although awake before food arrival, were less eager to feed compared to controls, as assessed by food bin approaches. Control rats were slightly more active than lesion rats during restriction. In conclusion, the functional integrity of the TMN is required for the full expression of the anticipatory events that are stimulated by a restricted feeding schedule.

Related Products: Orexin-B-SAP (Cat. #IT-20)

Neuroinflammatory response to mu p75-saporin immunotoxin-induced degeneration of basal forebrain cholinergic neurons

Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm AE (2003) Neuroinflammatory response to mu p75-saporin immunotoxin-induced degeneration of basal forebrain cholinergic neurons. Neuroscience 2003 Abstracts 527.15. Society for Neuroscience, New Orleans, LA.

Summary: Basal forebrain cholinergic neurons, which provide the major cholinergic innervation to the cortical regions and play a key role in the processing of information involved in cognitive processes, degenerate during both normal aging and Alzheimer’s disease. Neuroinflammation, specifically the activation of microglia, is known to affect the progression of neuronal degeneration. Activated microglia produce inflammatory mediators that have neuropathic as well as neuroprotective actions, and it has been suggested that inflammatory mediators produced by activated microglia may play a role in the decline of specific neuronal sub-types in neurodegenerative diseases. The immunotoxin mu p75-SAP has been shown to selectively destroy cholinergic neurons in the basal forebrain of mice, resulting in reduced choline acetyl-transferase activity and cognitive impairments. To characterize the inflammatory response to mu p75-SAP lesions, 3 month-old mice received icv injections of mu p75-SAP (3.6 mg) followed by treatment with an anti-inflammatory agent, minocycline (45 mg/kg i.p.), or saline. Seven days after lesioning, immunohistochemistry was used to analyze markers for cholinergic and non-cholinergic neurons and inflammation. Cholinergic lesioning resulted in a dramatic increase in CD45, a microglial marker, but no change in GFAP, an astroglial marker, in the basal forebrain region. Lesioned animals had elevated levels of phosphorylated p38, a MAP kinase protein involved in inflammatory pathways. Minocycline treatment reduced this inflammatory response. Furthermore, preliminary results suggest that animals treated with minocycline after mu p75-SAP lesioning are partially protected from cholinergic degeneration.

Related Products: mu p75-SAP (Cat. #IT-16)

Shopping Cart
Scroll to Top