1. Home
  2. Knowledge Base
  3. References
  4. Altered neurogenesis after cholinergic forebrain lesion in the adult rat.

Altered neurogenesis after cholinergic forebrain lesion in the adult rat.

Cooper-Kuhn CM, Winkler J, Kuhn H (2003) Altered neurogenesis after cholinergic forebrain lesion in the adult rat. Neuroscience 2003 Abstracts 348.9. Society for Neuroscience, New Orleans, LA.

Summary: Adult hippocampal neurogenesis has been shown to be functionally connected to learning and memory and at the same time to be regulated by a multitude of extracellular cues, including hormones, growth factors, and neurotransmitters. The cholinergic forebrain system is one of the key transmitter systems for learning and memory. Within the hippocampus and olfactory bulb, two regions of adult neurogenesis, cholinergic innervation is quite extensive. This experiment aims at defining the role of cholinergic input during adult neurogenesis by using an immunotoxic lesion approach. The immunotoxin 192IgG-saporin was infused into the lateral ventricle of adult rats to selectively lesion the cholinergic neurons of the cholinergic basal forebrain (CBF), which project to the dentate gyrus and the olfactory bulb. Five weeks after lesion the rate of neurogenesis declined significantly in the dentate gyrus and olfactory bulb granule cell layers, whereas the generation of neurons in the periglomerular region of the olfactory bulb was unaffected. The number of apoptotic cells increased specifically in the progenitor region of the dentate gyrus as well as in the periglomerular layer of the olfactory bulb. Therefore, one of the possible mechanisms by which acetylcholine could promote neurogenesis is by increasing the survival of progenitor and immature neurons. Neurotransmitters can alter the microenvironment of neural progenitor cells, whether directly or indirectly, and these changes lead to significant alterations in neurogenesis. In principle, the data suggest that acetylcholine is stimulatory to adult hippocampal neurogenesis, since neurotoxin lesions specific to this neurotransmitter system lead to a reduced number of new neurons.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top