- Home
- Knowledge Base
- References
References
OP11: Role of spinal cholecystokinin receptor 2 in alloknesis models.
Tominaga M, Kusube F, Honda K, Komiya E, Takahashi N, Naito H, Suga Y, Takamori K (2019) OP11: Role of spinal cholecystokinin receptor 2 in alloknesis models. Itch 4:1-62. doi: 10.1097/itx.0000000000000030
Objective: To determine the detailed molecular and cellular mechanisms that induce alloknesis via the spinal CCK2 receptor.
Summary: Ablation of spinal CCK receptor-expressing cells by i.t. injection of CCK-SAP attenuated CCK8S-induced alloknesis in comparison with Blank-SAP control mice.
Usage: Intrathecal injection
Related Products: CCK-SAP (Cat. #IT-31), Blank-SAP (Cat. #IT-21)
Corticolimbic stress regulatory circuits, hypothalamo–pituitary–adrenocortical adaptation, and resilience
Herman JP (2020) Corticolimbic stress regulatory circuits, hypothalamo–pituitary–adrenocortical adaptation, and resilience. Chen A (Ed.): Stress Resilience 291-309. Academic Press doi: 10.1016/B978-0-12-813983-7.00019-7
Summary: Review. Immunolesion of paraventricular nucleus (PVN)-projecting norepinephrine (NE) neurons with Anti-DBH-SAP attenuates acute stress reactivity (interestingly, to restraint), but it does not inhibit somatic or HPA axis responses to stress in any simple way (Flak et al.). PVN-projecting NE neurons appear to be responsible for acute responses to systemic stressors, but they do not appear to be important in mediating effects of chronic stress (Ritter et al.).
Usage: Flak et al. injected 8.82 ng of Anti-DBH-SAP into the PVN. Ritter et al. injected 42 ng into the PVN.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
See Also:
- Flak J et al. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci 39:1903-1911, 2014.
- Ritter S et al. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144(4):1357-1367, 2003.
Renal denervation for treating congenital long QT syndrome: Shortening the QT interval or modulating sympathetic tone?
Kiuchi MG, Chen S, Carnagarin R, Matthews VB, Schlaich MP (2019) Renal denervation for treating congenital long QT syndrome: Shortening the QT interval or modulating sympathetic tone?. Europace 21(11):1755-1756. doi: 10.1093/europace/euz251
Summary: Targeted ablation of cardiac sympathetic neurons (TACSN) through CTB-SAP injection in the left stellate ganglion (LSG), inhibited its activation, improved sympathetic remodelling, and restored cardiac autonomic balance.
Related Products: CTB-SAP (Cat. #IT-14)
Light stimulation into dorsal raphe nucleus contributes to antidepressant effect for a stressed rat model.
Li X (2019) Light stimulation into dorsal raphe nucleus contributes to antidepressant effect for a stressed rat model. bioRxiv 821421. doi: 10.1101/821421 PMID: 0
Usage: immunohisochemistry (1:500)
Related Products: Corticotropin Releasing Hormone Rabbit Polyclonal (Cat. #AB-02)
Targeting AngII/AT1R signaling pathway by perindopril inhibits ongoing liver fibrosis in rat.
Abd El‐Rahman SS, Fayed HM (2019) Targeting AngII/AT1R signaling pathway by perindopril inhibits ongoing liver fibrosis in rat. J Tissue Eng Regen Med 13:2131-2141. doi: 10.1002/term.2940 PMID: 31348596
Usage: IHC (1:100)
Related Products: Angiotensin II receptor (AT-2R) Rabbit Polyclonal, affinity-purified (Cat. #AB-N28AP)
How to stimulate: Basal forebrain DBS parameters to restore the attentional performance of rats with cholinergic losses
Nazmuddin M, Rao HA, Van Laar T, Sarter MF (2019) How to stimulate: Basal forebrain DBS parameters to restore the attentional performance of rats with cholinergic losses. Neuroscience 2019 Abstracts 377.10. Society for Neuroscience, Chicago, IL.
Summary: The degeneration of basal forebrain (BF) cholinergic neurons is an index of the severity of cognitive impairment in Alzheimer disease (AD) and Parkinson’s disease (PD). Moreover, in PD patients, gait and balancing deficits, and an increased propensity for falls have been attributed to cholinergic losses. Thus, Deep Brain Stimulation (DBS) of the BF has been considered a potential therapeutic intervention to improve cognition and movement control in these patients. However, efficacy of BF DBS in clinical populations has yet to be conclusively demonstrated. Likewise, the demonstration of beneficial effects of BF DBS in rodent models has been hampered by uncertainties about useful animal models and behavioral tasks and, importantly, a lack of consensus concerning DBS parameters (duration, frequency, current, intermittent versus continuous, prior and/or during task, etc.). Here we assessed various DBS parameters in rats with a partial loss of the cortical cholinergic input system. In rats, such cholinergic losses have been frequently demonstrated to impair the detection of cues during the performance of a Sustained Attention Task (SAT) and to attenuate performance recovery following a distractor challenge (dSAT). In PD patients with cholinergic losses, attentional impairments were also attributed to cortical and thalamic cholinergic losses (Kim et al., 2017). The attribution of SAT impairments to cholinergic losses is consistent with evidence showing that the detection of cues and associated attentional control parameters depend on cortical cholinergic signaling (e.g., Howe et al., 2017). Here, rats acquired the SAT, received infusions of the cholino-specific neurotoxin 192-IgG-saporin into the BF, and were implanted bilaterally with BF unipolar stimulation electrodes. Initial DBS parameters consisted of continuous high (130 Hz) versus low (20 Hz) frequency stimulation, intermittent (20-s ON at 80 Hz and 40-s OFF) stimulation, with pulse width and amplitude kept constant at 100 µs and 100 µA, respectively. We first assessed the effects of these DBS parameters on the behavior of rats in an open field space and then when administered during, or only prior to (for 1 hr), SAT and dSAT performance. Ongoing experiments indicate that these stimulation parameters are well tolerated as indicated by the absence of effects on locomotor and exploratory activity. We predict that BF DBS will be particularly effective in restoring attentional performance in the dSAT condition. If confirmed, this finding will suggest that demonstration of efficacy in patients will require measures indicating their attentional capacities in response to taxing performance challenges.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Effects of an orexin-2 receptor agonist on attention in rats following loss of cortical cholinergic projections
Blumenthal SA, Maness EBL, Fadel JR, Burk JA (2019) Effects of an orexin-2 receptor agonist on attention in rats following loss of cortical cholinergic projections. Neuroscience 2019 Abstracts 418.06. Society for Neuroscience, Chicago, IL.
Summary: Deterioration to the basal forebrain cholinergic system (BFCS) is linked to age-related cognitive impairment, specifically to the pathology of Alzheimer’s disease (AD). Animals with BFCS damage perform poorly on learning, memory, and attention tasks, indicating cognitive deficits. The orexin neuropeptide system, comprised of two neuropeptides (orexin A and orexin B), has also been implicated in the cognitive decline associated with aging, likely due to the role of orexins in promoting attention. Two orexin receptor subtypes exist, orexin 1 (Ox1R) and orexin 2 (Ox2R). Studies have examined the effects of stimulation and blockage of both receptors together and Ox1R alone on attention; but no studies have examined the role of Ox2Rs in attention through the use of Ox2R agonists. Ox2Rs may be implicated in attentional processes and the loss of orexin neurons seen in age-related cognitive decline. In order to examine the role of Ox2Rs in attention following BFCS deterioration, the present study administered the Ox2R agonist, YNT-185, to rats given intrabasalis infusions of either saline (n = 12) or 192 IgG saporin (n=11), an immunotoxin which selectively destroys the BFCS. Animals received infusions of YNT-185 to the lateral ventricle (LV) in doses of 0, 1, 10, and 100nM across four separate sessions and performance was then assessed on a sustained attention task requiring discrimination between signal and non-signal trials through lever presses. The 100nM dose of YNT-185 improved attentional performance, as compared to the 0nM dose, for rats given the immunotoxin, but worsened performance for rats given saline lesions. YNT-185 may be efficacious in aiding attentional function in animals with vulnerable cholinergic systems but may lead to overexcitation for those with intact cholinergic function.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Dissociable attentional effects of dopaminergic and cholinergic lesions to the anterior cingulate cortex
Clement MK, Pimentel CS, Swaine JA, Pimentel AJ, Hutchins D, McGaughy JA (2019) Dissociable attentional effects of dopaminergic and cholinergic lesions to the anterior cingulate cortex. Neuroscience 2019 Abstracts 418.11. Society for Neuroscience, Chicago, IL.
Summary: Prior work from our lab has shown that excitotoxic lesions to the anterior cingulate cortex (ACC) impairs the ability of rats to filter certain types of distracting stimuli (Newman and McGaughy 2011). Specifically, rats with lesions of the ACC cannot filter distractors that have been made salient through pairing with reinforcement. In contrast, these same subjects can filter distracting stimuli that have not been predictive of reward. The present study investigates the effects of neuromodulator specific lesions of the same region to determine how specific neuromodulators contribute to the attentional function of ACC. Cholinergic or dopaminergic deafferentation of the ACC was achieved using either 192 IgG saporin (n=10) or dopamine transporter saporin (n=10). Lesions were restricted to the rostral portion of the area and did not spread to nearby prefrontal sub-regions e.g prelimbic cortex. After lesioning, subjects were tested in an attentional set-shifting task (Birrell and Brown 2000). While both cholinergic and dopaminergic lesions increased distractibility, these deficits were not as severe as those produced after excitotoxic lesions (n= 8). In contrast to excitotoxic lesions, both cholinergic and dopaminergic lesions also impeded formation of an attentional set. Because dopaminergic lesions produced impairments in many stages of the tasks, we hypothesized that these subjects had a more general impairment in stimulus processing. In order to address these broader processing impairments, we analyzed the data to determine whether lesioned rats showed more sensitivity to novel stimuli, or made more perseverative errors. The implications of these data for understanding the unique contributions of acetylcholine and dopamine to attentional processing in the ACC will be discussed.
Related Products: 192-IgG-SAP (Cat. #IT-01), Anti-DAT-SAP (Cat. #IT-25)
SUVN-G3031, histamine H3 receptor inverse agonist preclinical evaluation for the treatment of excessive daytime sleepiness in narcolepsy
Bhyrapuneni G, Benade V, Daripelli S, Kamuju V, Shinde A, Abraham R, Nirogi R, Jasti V (2019) SUVN-G3031, histamine H3 receptor inverse agonist preclinical evaluation for the treatment of excessive daytime sleepiness in narcolepsy. Neuroscience 2019 Abstracts 502.07. Society for Neuroscience, Chicago, IL.
Summary: Numerous studies have demonstrated that brain histamine plays a crucial role in maintenance of wakefulness, attention, learning and other cognitive processes. SUVN-G3031, a potent histamine H3 receptor inverse agonist is being developed for the treatment of narcolepsy and other sleep related disorders. SUVN-G3031 is one of the lead molecules with hKi of 8.7 nM and has more than 100 fold selectivity against the related GPCRs. SUVN-G3031 exhibited desired pharmacokinetic properties and brain penetration. SUVN-G3031 blocked R-α-methylhistamine induced water intake and increased tele-methylhistamine levels in brain and cerebrospinal fluid. In the present study, SUVN-G3031 was evaluated in brain microdialysis and rodent models of electroencephalography (EEG). SUVN-G3031 was evaluated in brain microdialysis for evaluation of neurotransmitters like acetylcholine, histamine, dopamine and norepinephrine in male Wistar rats. EEG was used to evaluate the effects on sleep/ wake profile in rats and mice.A single oral administration of SUVN-G3031 produced significant increase in acetylcholine, histamine, dopamine and norepinephrine levels in the cortex. SUVN-G3031 produced no change in the dopamine levels of striatum and nucleus accumbens indicating that SUVN-G3031 may not have addiction liabilities. Narcoleptic-like sleep behavior was observed in rats injected with hypocretin-2-saporin in lateral hypothalamus. SUVN-G3031 produced significant increase in wakefulness with concomitant decrease in rapid eye movement (REM) sleep in these animals. These results are in agreement with EEG studies carried out in healthy male Wistar rats. Results from current studies provide strong evidence for the potential of SUVN-G3031 in the treatment of excessive daytime sleepiness associated with narcolepsy. First in human, Phase 1 studies for SUVN-G3031 are completed under US IND and SUVN-G3031 has shown desirable pharmacokinetic profile with safety and tolerability in healthy human volunteers. Phase 2 study for the treatment of excessive daytime sleepiness associated with narcolepsy is currently ongoing in USA.
Related Products: Orexin-B-SAP (Cat. #IT-20)
Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat
Walker JR, Ong A, Detloff MR (2019) Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat. Neuroscience 2019 Abstracts 572.09. Society for Neuroscience, Chicago, IL.
Summary: Individuals with spinal cord injury (SCI) suffer a loss of motor and sensory function. The current standard of care to recover fine motor control is rehabilitation focused on a combination of range of motion, aerobic, and strength training (ST). However, limited research has been conducted to determine the role of nociceptive afferent inputs from muscle on spinal plasticity and/or recovery of function. Using a rodent model of SCI strength training rehabilitation, we determined that motor training not only improves forelimb strength and fine motor function but also can modulate the development of neuropathic pain, suggesting that improvements in reaching and grasping may be due, in part, to plasticity of nociceptive afferents. To further explore this, Sprague-Dawley rats received injections of rIB4-conjugated saporin, mu p75-conjugated saporin or unconjugated (vehicle) into the cervical dorsal root ganglia unilaterally to eliminate non-peptidergic and peptidergic nociceptors. There is an uninjured cohort and a group with unilateral C5 SCI. Von Frey and Hargreaves’ tests were performed at baseline and several time points post-injection to assess the effcacy of the nociceptive elimination. Several measures of forelimb strength were recorded over time including the isometric pull task, a single pellet retrieval task and the Montoya staircase test. To confirm the depletion of peptidergic and non-peptidergic nociceptors following saporin injection and/or SCI, cervical DRGs and spinal cords were stained with antibodies against CGRP and isolectin-B4. An understanding of the role of nociceptors in spinal plasticity and functional motor and sensory recovery of SCI patients will guide future research and refine rehabilitation strategies to further improve their quality of life.
Related Products: IB4-SAP (Cat. #IT-10), mu p75-SAP (Cat. #IT-16)