References

Related publications for ATS products and services
2938 entries

Characterization of cultured multipotent zebrafish neural crest cells

Kinikoglu B, Kong Y, Liao EC (2014) Characterization of cultured multipotent zebrafish neural crest cells. Exp Biol Med (Maywood) 239(2):159-168. doi: 10.1177/1535370213513997 PMID: 24326414

Summary: This work details the isolation of neural crest cells (NCCs) from transgenic zebrafish embryos expressing GFP and flow cytometry; the authors analyzed lineage markers and differentiation of the NCCs. Anti-mu p75 (Cat. #AB-N01AP) was used in immunocytochemistry at a 1:20 dilution on fixed cells.

Related Products: NGFr (mu p75) Rabbit Polyclonal, affinity-purified (Cat. #AB-N01AP)

BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease.

Burke RM, Norman TA, Haydar TF, Slack BE, Leeman SE, Blusztajn JK, Mellott TJ (2013) BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 110(48):19567-19572. doi: 10.1073/pnas.1319297110 PMID: 24218590

Summary: During development bone morphogenetic protein 9 (BMP9) induces the cholinergic phenotype in the basal forebrain. The authors investigated the use of BMP9 as a treatment of basal forebrain cholinergic degeneration, such as is seen in Alzheimer’s disease (AD). Transgenic mice displaying AD phenotypes and expressing GFP in cholinergic neurons received icv infusions of BMP9, and several cholinergic markers were assessed. Anti-p75NTR (Cat. #AB-N01) was used in immunoblotting at a 1:3000 dilution to measure p75 levels. The results demonstrate the protective and therapeutic activity of BMP9 on AD symptoms.

Related Products: NGFr (mu p75) Rabbit Polyclonal (Cat. #AB-N01)

C1 neurons: the body’s EMTs.

Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG, Abbott SB (2013) C1 neurons: the body’s EMTs. Am J Physiol Regul Integr Comp Physiol 305(3):R187-204 . doi: 10.1152/ajpregu.00054.2013

Summary: Although mainly known for their involvement in the control of arterial pressure, C1 neurons are also suspected to participate in numerous other physiological processes such as neuroendocrine response, glucose homeostasis, food consumption, and others. This review discusses the role of these neurons as ’emergency medical technicians’ – cells that produce and modulate physiological survival responses to acute physical stress. The use of Anti-DBH-SAP (Cat. #IT-03) to delineate C1 neurons in the rostral ventrolateral aspect of the medulla oblongata is discussed.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan.

Leoni G, Rattray M, Fulton D, Rivera A, Butt AM (2014) Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan. J Anat 224(2):216-227. doi: 10.1111/joa.12141

Summary: In this work the authors use an antibody against the NG2-glia marker chondroitin sulphate proteoglycan (CSPG) along with Mab-ZAP (Cat. #IT-04) on cell lines and brain slices to eliminate cells expressing CSPG. The results demonstrate selective and effective killing, providing a method to study the function of these cells.

Related Products: Mab-ZAP (Cat. #IT-04)

Hindbrain noradrenergic input to the hypothalamic PVN mediates the activation of oxytocinergic neurons induced by the satiety factor oleoylethanolamide.

Romano A, Potes CS, Tempesta B, Cassano T, Cuomo V, Lutz T, Gaetani S (2013) Hindbrain noradrenergic input to the hypothalamic PVN mediates the activation of oxytocinergic neurons induced by the satiety factor oleoylethanolamide. Am J Physiol Endocrinol Metab 305(10):E1266-73. doi: 10.1152/ajpendo.00411.2013

Summary: Feeding behavior and energy balance are in part controlled by signals from the gut. Oleoylethanolamide (OEA) is an acylethanolamide that is thought to play a role in this network. Since peripheral administration of OEA has effects on the nucleus of the solitary tract (NTS) and paraventricular nucleus (PVN) the authors investigated the role of noradrenergic afferent input to these areas. Rats received bilateral 84-ng injections of Anti-DBH-SAP (Cat. #IT-03) into the PVN. Mouse IgG-SAP (Cat. #IT-18) was used as a control.

Related Products: Anti-DBH-SAP (Cat. #IT-03), Mouse IgG-SAP (Cat. #IT-18)

Selective potentiation of (alpha4)3(beta2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats.

Grupe M, Paolone G, Jensen AA, Sandager-Nielsen K, Sarter M, Grunnet M (2013) Selective potentiation of (alpha4)3(beta2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochem Pharmacol 86(10):1487-1496. doi: 10.1016/j.bcp.2013.09.005

Summary: Nicotinic acetylcholine receptors (nAChR) are involved in a wide range of processes in the central nervous system, many having to do with higher cognitive functions. In order to better understand how these receptors mediate attentional performance, the authors investigated glutamate release under varying conditions. In one series of experiments rats received a 160-ng injection of 192-IgG-SAP (Cat. #IT-01) into the right medial prefrontal cortex. The resulting decrease in glutamate release after the cholinergic lesion adds to the data indicating that positive modulation of nAChR may help alleviate attentional impairments caused by some brain disorders.

Related Products: 192-IgG-SAP (Cat. #IT-01)

CD4+ T lymphocytes interact with microglia to modulate hippocampal neurogenesis.

Khan D, Owens E, Zaben M, Dunnett SB, Gray WP (2013) CD4+ T lymphocytes interact with microglia to modulate hippocampal neurogenesis. Neuroscience 2013 Abstracts 699.04. Society for Neuroscience, San Diego, CA.

Summary: Hippocampal neurogenesis occurs within the subgranular zone of the dentate gyrus and is important for learning and memory. Neurogenesis is impaired in patients with chronic temporal lobe epilepsy, an observation that may account for the learning and memory deficits that these patients commonly have. Emerging literature demonstrates that CD4+ T lymphocytes increase neurogenesis and enhance cognition; however, the exact mechanisms remain undetermined. Vasoactive Intestinal Peptide (VIP) receptors are expressed on T lymphocytes, microglia and hippocampal progenitor cells, hence this study was designed to investigate VIP’s role in mediating neuro-immune modulation. Hippocampal cultures (P7-10 Sprague Dawley rats) were generated and maintained for 3 days in vitro (DIV) and treated with 5% supernatant generated from C57/Bl6 mouse spleen using a CD4+ T lymphocyte isolation kit. BrdU and experimental conditions were added for the terminal 6 hours before fixation and then processed for BrdU and nestin. For phenotype analysis, experimental conditions were added at 3DIV and fixed at 6DIV to be processed for nestin and TuJ1. To deplete microglia, Mac-1-SAP was added at 2DIV for 24 hours before experimental conditions were added. 5% T lymphocytes supernatant increased proliferation of hippocampal nestin-expressing cells; an effect that is further enhanced under VIP treatment via VPAC1 receptor subtype. Examining potential cytokine mediators of this effect, PCR analysis showed 6-fold increase in IL-4 mRNA expression, and IL-4 antagonist abolished VIP proliferative effects. Using Mac-1-SAP to account for microglial involvement by depleting microglia, VIP proliferative effects were abolished. Our phenotyping studies also demonstrated an additional neurogenic effect under VIP treated supernatant compared to standard control conditions. Taken together, these results show VPAC1 receptor subtype expressed by CD4+ T lymphocytes mediates VIP proliferative effects on hippocampal cells via IL-4 cytokine release. Microglia mediates VIP proliferative effects. While we demonstrated before that VPAC2 mediates hippocampal progenitor cell survival, the findings of this study strongly implicate VPAC1 receptor as a neuro-immune mediator of hippocampal neurogenesis, and from a therapeutic perspective, shows that the effect can be pharmacologically manipulated.

Related Products: Mac-1-SAP rat (Cat. #IT-33)

ATS Poster of the Year Winner

Investigating the potential of stem cell based therapy in an immunotoxin mouse model of Alzheimer’s disease.

Tiwari D, Warden H, Haynes JM, Nicolazzo JA, Pouton CW, Short JL (2013) Investigating the potential of stem cell based therapy in an immunotoxin mouse model of Alzheimer’s disease. Neuroscience 2013 Abstracts 712.19. Society for Neuroscience, San Diego, CA.

Summary: Purpose: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by reduced cognitive function. Stem cell based therapeutic approaches are a potential therapeutic option. In order to investigate this possibility the study focuses on the characterization of a dual reporter embryonic stem (ES) cell line and validation of an immunotoxin mouse model of AD for future transplantation experiments. Methods: A dual (mcherry and Lhx8+) reporter ES cell line was derived from the E14Tg2a mouse ES cell line. The ES cells were assessed for their differentiation capability and characterized using mmunocytochemistry. For the immunotoxin model, 6-8 week old C57BL/6 male mice (n = 12) were treated with bilateral intracerebroventricular injections of saline (control) or mu-p75-saporin toxin (0.4µg/µl/mouse) to cause cholinergic neuronal lesions. Mice were cognitively assessed using a novel three day water maze (WM) protocol and the novel object recognition (NOR) paradigm. Immunohistochemistry was done to detect the toxin dependent loss of cholinergic neurons. Results and conclusions: A significant difference in learning the WM task was observed during cued and spatial trials, with toxin-treated mice taking longer to reach the platform than control mice (two way ANOVA; p<0.01). Performance in the WM during the probe trial was also significantly reduced in toxin-treated mice, compared to control mice (t-test; p<0.05), indicating memory loss in toxin-injected mice and better learning in the saline-treated controls. However, no memory impairment was detected using the NOR test. Immunohistochemistry for choline acetyltransferase (ChAT) confirmed a significant loss (p<0.0001; t test) of cholinergic neurons in the medial septum. These data indicate that the toxin model is appropriate for use in subsequent transplantation studies. FACS analysis of the reporter cell line showed the presence of a small population of Lhx8+ cells at day 6 and 10 of differentiation. Immunocytochemistry for ChAT on day 18 cells revealed the presence of a few cholinergic positives neurons as compared to wild type controls. Literature suggests a possible role of Lhx8 in cholinergic development and these cells will be investigated further in order to select cholinergic progenitors for transplantation.

Related Products: mu p75-SAP (Cat. #IT-16)

Activation of NF-κB signaling in the hippocampus without cholinergic input was aggravated by chronic stress

Lee S-Y, Kim M-S, Han J-S (2013) Activation of NF-κB signaling in the hippocampus without cholinergic input was aggravated by chronic stress. Neuroscience 2013 Abstracts 717.18. Society for Neuroscience, San Diego, CA.

Summary: Previous studies have demonstrated that loss of cholinergic input to hippocampus contributes dysfunction of HPA axis and alters GR-PKA-NF-κB signaling in hippocampus. In the hippocampus without cholinergic input, interactions of GR and PKA are decreased, whereas interactions of PKA and NF-κB are increased and phosphorylations on Ser276 of NF-κB p65 are increased. On the other hand, activation of NF-κB p65 is associated with behavioral action of stress and depression. The present research was conducted to examine whether NF-κB activation induced by cholinergic lesions is aggravated in response to chronic stress. Young adult rats received immunotoxic lesions of basal forebrain cholinergic neurons by intracranial injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. After 2 weeks recovery from surgery, rats with cholinergic lesions and vehicle-injected control rats were subjected to 1 hr restraint stress per day for 2 weeks. We examined that cholinergic deafferentation induced alterations in GR and NF-κB p65 expression in hippocampus and prefrontal cortex. Rats with cholinergic deafferentation and chronic stress showed more activation of NF-κB p65 signaling in the hippocampus compared with rats with cholinergic deafferentation only. Thus the loss of cholinergic integrity during aging and in AD might increase proneness to chronic stress.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Compensatory feeding after reversing dehydration-anorexia: Is it analogous to glucoprivic or food deprivation-induced feeding?

Vargas SL, Watts AG (2013) Compensatory feeding after reversing dehydration-anorexia: Is it analogous to glucoprivic or food deprivation-induced feeding?. Neuroscience 2013 Abstracts 757.04. Society for Neuroscience, San Diego, CA.

Summary: We use dehydration (DE)-anorexia to identify the neural networks associated with feeding behavior. How these networks are organized and interact to control ingestive behavior in both the normal and anorexic states allows us to determine how they function in health and disease. DE-anorexia involves replacing drinking water with hypertonic saline (HS) for up to 5 days. This leads to cellular dehydration, and a reduction in food and body weight. Reversing DE-anorexia by removing HS and reinstating drinking water leads to a robust feeding episode. Here we used two experiments to determine whether this water-activated compensatory feeding is functionally related to 2-deoxyglucose (2DG)-activated (glucoprivic) or to food deprivation-induced feeding. First, we determined whether forebrain-projection catecholamine (CA) neurons in the hindbrain are required for water-activated compensatory feeding. These neurons project to the paraventricular nucleus of the hypothalamus (PVH) and are required for 2DG feeding. To do this we lesioned this pathway with the retrogradely-transported immunotoxin, anti-dopamine beta-hydroxylase (DBH) Saporin (DSAP). Anesthetized adult male Sprague-Dawley rats (300g) were injected into the PVH with either a control SAP (MIgSAP) or DSAP. Three weeks later animals were housed in BioDaq monitoring cages to record their feeding behavior. All animals were given HS for 5 days. They were then given drinking water back on the 5th day, and euthanized 75 minutes later. Lack of immunohistochemical staining (IHC) for DBH in the PVH confirmed complete lesions. DSAP lesions had no significant effect on the amount eaten or the latency to begin feeding. Forebrain-projecting CA neurons are therefore not required for water-activated compensatory feeding. Second, we compared the feeding behavior of DE-rats given back water to that of food-deprived rats given food. We also examined the neuronal activity in the hindbrain of these animals using Fos. Meal pattern analysis showed little difference between groups, once feeding was initiated. Dual IHC labeling for Fos and DBH showed no colocalization following drinking water and deficit induced feeding. This contrasts with 2DG stimulated feeding. Furthermore, we show that the Fos expression in particular parts of the nucleus of the solitary tract and the parabrachial nucleus is consistent their roles in projecting visceral and gustatory information to the hypothalamus to coordinate feeding. Thus water-activated compensatory feeding engages mechanisms similar to those used during food deprivation-induced feeding rather than glucoprivic feeding.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Shopping Cart
Scroll to Top