SFN Poster of the Year 2013

Awarded by ATS at Society for Neuroscience (SFN) November 9-13, 2013 • San Diego, CA

699.04 CD4+ T lymphocytes interact with microglia to modulate hippocampal neurogenesis.
D Khan, E Owens, M Zaben, S B Dunnett, W P Gray,
featuring IT-33 Mac-1-SAP rat (Poster; Wednesday, November 13, 11:00 am – 12:00 pm)

Hippocampal neurogenesis occurs within the subgranular zone of the dentate gyrus and is important for learning and memory. Neurogenesis is impaired in patients with chronic temporal lobe epilepsy, an observation that may account for the learning and memory deficits that these patients commonly have. Emerging literature demonstrates that CD4+ T lymphocytes increase neurogenesis and enhance cognition; however, the exact mechanisms remain undetermined. Vasoactive Intestinal Peptide (VIP) receptors are expressed on T lymphocytes, microglia and hippocampal progenitor cells, hence this study was designed to investigate VIP’s role in mediating neuro-immune modulation.

Hippocampal cultures (P7-10 Sprague Dawley rats) were generated and maintained for 3 days in vitro (DIV) and treated with 5% supernatant generated from C57/Bl6 mouse spleen using a CD4+ T lymphocyte isolation kit. BrdU and experimental conditions were added for the terminal 6 hours before fixation and then processed for BrdU and nestin. For phenotype analysis, experimental conditions were added at 3DIV and fixed at 6DIV to be processed for nestin and TuJ1. To deplete microglia, Mac-1-SAP was added at 2DIV for 24 hours before experimental conditions were added.

5% T lymphocytes supernatant increased proliferation of hippocampal nestin-expressing cells; an effect that is further enhanced under VIP treatment via VPAC1 receptor subtype. Examining potential cytokine mediators of this effect, PCR analysis showed 6-fold increase in IL-4 mRNA expression, and IL-4 antagonist abolished VIP proliferative effects. Using Mac-1-SAP to account for microglial involvement by depleting microglia, VIP proliferative effects were abolished. Our phenotyping studies also demonstrated an additional neurogenic effect under VIP treated supernatant compared to standard control conditions.

Taken together, these results show VPAC1 receptor subtype expressed by CD4+ T lymphocytes mediates VIP proliferative effects on hippocampal cells via IL-4 cytokine release. Microglia mediates VIP proliferative effects. While we demonstrated before that VPAC2 mediates hippocampal progenitor cell survival, the findings of this study strongly implicate VPAC1 receptor as a neuro-immune mediator of hippocampal neurogenesis, and from a therapeutic perspective, shows that the effect can be pharmacologically manipulated.