Lynch TJ, Anderson PJ, Rotti PG, Tyler SR, Crooke AK, Choi SH, Montoro DT, Silverman CL, Shahin W, Zhao R, Jensen-Cody CW, Adamcakova-Dodd A, Evans TIA, Xie W, Zhang Y, Mou H, Herring BP, Thorne PS, Rajagopal J, Yeaman C, Parekh KR, Engelhardt JF (2018) Submucosal gland myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell 22(5):653-667.e5. doi: 10.1016/j.stem.2018.03.017 PMID: 29656941
Objective: To investigate whether a lineage relationship exists between two stem cell compartments that contribute to airway repair – basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) celltype.
Summary: Using lineage tracing of glandular myoepithelial cells (MECs), they demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established asting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1in vivo promoted self-limited airway regeneration in the absence of injury.
Usage: immunofluorescence
Related Products: NGFR (mu p75) Rabbit Polyclonal, affinity-purified (Cat. #AB-N01AP)