Ricceri L, Baxter MG, Frick KM, Berger-Sweeney J (2000) Preservation of reactivity to spatial novelty in adult rats after specific basal forebrain 192 IgG-saporin lesions. Neuroscience 2000 Abstracts 563.4. Society for Neuroscience, New Orleans, LA.
Summary: We have shown previously that neonatal intracerebroventricular (icv) injections of the selective cholinergic immunotoxin 192 IgG-saporin induce marked cholinergic loss in both hippocampus and cortex. These lesions also have long-term behavioral effects in adulthood, impairing reactivity to spatial novelty in a spatial open field test with five objects. In the present study, we analyzed behavioral and neurochemical effects of intraparenchymal injections of 192 IgG-saporin in the medial septal area (MS, 175 ng) or nucleus basalis magnocellularis area (nBM, 70 ng per side) of adult Wistar rats. Animals were then tested in the spatial open field test. NBM cholinergic lesions significantly reduced object exploration in the initial phase of the test, whereas locomotor activity, spatial and object novelty responses were unaffected by either the MS or nBM lesion. A loss in cortical (-61%) and hippocampal (-92%) choline acetyl-transferase activity was found following nBM and MS lesions, respectively. These data show that, although interrupting cholinergic basal forebrain innervation of neocortex and hippocampus in the first postnatal week induces long-term deficits in reaction to spatial rearrangement of familiar objects, the removal of the cholinergic inputs in adulthood does not compromise the same behavioral responses. These data suggest that the same MS and nBM neurons play differential roles in regulating reactivity to spatial changes at different maturational stages.
Related Products: 192-IgG-SAP (Cat. #IT-01)