Chou TC, Gerashchenko D, Saper CB, Shiromani PJ (2001) Loss of histaminergic neurons does not produce hypersomnolence. Neuroscience 2001 Abstracts 522.21. Society for Neuroscience, San Diego, CA.
Summary: Electrolytic lesions of the posterior hypothalamus (PH) produce long-lasting hypersomnolence (1,2). The PH contains histaminergic neurons in the tuberomammillary nucleus (TMN) that project diffusely throughout the brain. Because histamine promotes wakefulness while antihistamines are sedating, the TMN is thought to be critically involved in maintaining wakefulness. To test this hypothesis, we placed cell-specific lesions in the PH and TMN of rats and measured sleep-wake behavior. Lesions were produced using either the conventional excitotoxin ibotenic acid, or the novel toxin orexin (hypocretin) conjugated to the ribosomal toxin saporin (ORX/HCRT-SAP). Ibotenic acid injections were ineffective at lesioning the TMN; most histaminergic neurons were selectively spared while neurons in surrounding regions such as the mammillary bodies and supramammillary area were completely lesioned. In contrast, ORX/HCRT-SAP injections into the TMN lesioned up to 95% of histaminergic neurons, as determined by adenosine-deaminase immunostaining, with a similar loss of neurons in adjacent areas. Surprisingly, neither group of rats showed changes in NREM or REM sleep time or circadian distribution of sleep relative to saline-injected controls for up to 2 weeks after surgery. Thus, the waking state may not be critically dependent on the PH or TMN in rats. Further research is needed to reconcile the sedating effects of antihistamines with the current findings. 1. Ranson 1939, Archiv Neurol and Psychiatry 41(1):1-23. 2. Swett and Hobson 1968, Arch Ital Biol 106(3):283-293.
Related Products: Orexin-B-SAP (Cat. #IT-20)