1. Home
  2. Knowledge Base
  3. References
  4. Capsaicin-sensitive inhibitory pathway in rat spinal cord dorsal horn.

Capsaicin-sensitive inhibitory pathway in rat spinal cord dorsal horn.

Gu JG, Nakatsuka T, Tanaka E, Takeda D, Jennifer LX (2001) Capsaicin-sensitive inhibitory pathway in rat spinal cord dorsal horn. Neuroscience 2001 Abstracts 158.13. Society for Neuroscience, San Diego, CA.

Summary: The inhibitory system in the spinal cord plays an important role in regulating nociceptive sensory inputs. Here we examined inhibitory synaptic activity in lamina V neurons of the spinal dorsal horn following the activation of capsaicin VR1 receptors. Experiments were performed with spinal cord slice preparations and inhibitory postsynaptic currents (IPSCs) were recorded using patch-clamp technique. Bath application of capsaicin (2 μM) increased the amplitude and frequency of GABAergic and glycinergic spontaneous IPSCs in the majority of lamina V neurons tested. The effects of capsaicin were completely antagonized by capsazepine (10 μM), and were also blocked in the presence of tetrodotoxin (0.5 μM). However, when CNQX (20 μM) and APV (100 μM) were used to block glutamatergic synaptic transmission, the effects of capsaicin were not abolished. Furthermore, after the injection of IB4-saporin into sciatic nerve to remove IB4-positive C-primary afferent terminals, capsaicin still increased sIPSC frequency in the presence of CNQX and APV. These results suggest that inhibitory pathway could be recruited in the absence of glutamatergic inputs from primary afferents. The release of neuropeptides from capsaicin-sensitive C-primary afferents may activate GABAergic and glycinergic interneurons in superficial laminae, and the inhibitory activity may be further forwarded to lamina V neurons. The capsaicin-sensitive inhibitory pathway may play an important role in the control of nociceptive transmission in the spinal cord.

Related Products: IB4-SAP (Cat. #IT-10)

Shopping Cart
Scroll to Top