1. Home
  2. Knowledge Base
  3. References
  4. Immunotoxin lesion of catecholaminergic neurons innervating the medial hypothalamus elevates basal expression of and attenuates glucoprivaation-induced increases in agouti gene related protein (AGRP) mRNA.

Immunotoxin lesion of catecholaminergic neurons innervating the medial hypothalamus elevates basal expression of and attenuates glucoprivaation-induced increases in agouti gene related protein (AGRP) mRNA.

Fraley GS, Dinh TT, Ritter S (2001) Immunotoxin lesion of catecholaminergic neurons innervating the medial hypothalamus elevates basal expression of and attenuates glucoprivaation-induced increases in agouti gene related protein (AGRP) mRNA. Neuroscience 2001 Abstracts 947.2. Society for Neuroscience, San Diego, CA.

Summary: Catecholaminergic (CA) innervation of medial hypothalamic structures is necessary for glucoprivation-induced feeding, glucocorticoid secretion and Fos expression in the paraventricular (PVH) and arcuate nuclei of the hypothalamus. In this experiment, we tested the hypothesis that the 2-deoxy-D-glucose (2DG)-induced an increase in AGRP mRNA expression (reported recently by Sergeyev et al., 2000) also requires NE/E neurons. CA neurons innervating the medial hypothalamus were lesioned using the toxin, saporin, targeted for selective entry into NE/E neurons by conjugation with a monoclonal antibody against dopamine beta hydroxylase. This toxin (DSAP), or unconjugated saporin (SAP) control solution, was bilaterally microinjected into the PVH. DSAP rats with confirmed 2DG-induced feeding deficits (DSAP 1.7 +/- 0.29 g; SAP 5.1 +/- 0.31 g; p < 0.05) and controls were injected with 2DG (250 mg/kg), or saline and maintained for 2 hrs without food. Hypothalami were harvested and subjected to Northern blot analysis of AGRP mRNA. Blot analysis revealed that 2DG increased mRNA expression in SAP controls (2DG: 1.0 +/- 0.05 RDU; saline: 0.7 +/- 0.02, p< .05), but not in DSAP lesioned rats (2DG: 1.1 +/- 0.04; saline: 1.0 +/- 0.03). In addition, basal AGRP mRNA expression was significantly elevated in DSAP-lesioned rats compared to SAP controls (p < .05). These data suggest that basal AGRP gene expression is controlled by hindbrain CA neurons and that increased AGRP gene expression induced by glucoprivation also requires these neurons.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Shopping Cart
Scroll to Top