Savage LM, Buzzette R, Ramirez D (2001) The role of the cholinergic basal forebrain in learning, memory and reward expectancies. Neuroscience 2001 Abstracts 314.18. Society for Neuroscience, San Diego, CA.
Summary: The cholinergic basal forebrain degenerates in Alzheimer’s Disease and the degree of this degeneration correlates with a decline in cognitive processing. In the present study we have modeled this degeneration in the rat by the selective immunotoxin 192 IgG-Saporin. This immunotoxin destroys cholinergic neurons in the basal forebrain nuclei in rats and thus allows for the study of the impact of cholinergic deafferentation on learning, memory, and other cognitive processes without direct effects on other neuronal systems. After intracerebroventricularly infusions of the immunotoxin or vehicle solution, male rats were allowed to recover for three weeks before being tested in a matching-to-position task. The matching-to-position task was altered to influence the type of cognitive strategies a subject would use to solve the task. The main behavioral manipulation was the use of the differential outcome procedure (DOP). The DOP involves correlating each to-be-remembered event with a distinct reward condition. We found that cholinergic lesions did not dramatically impair learning the matching rule. However, the memory performance of subjects with cholinergic lesions was dramatically impaired – if subjects were not trained with the DOP. When subjects were trained with the DOP, and relied on reward expectancies to solve the delayed-matching-to-position task the cholinergic lesion had little effect. These findings demonstrate that cholinergic immunolesions by 192IgG-saporin induce specific cognitive impairments—dependent on task demand characteristics.
Related Products: 192-IgG-SAP (Cat. #IT-01)