Schultz JA, Butt AE, George CL, Garraghty PE (2001) The effects of cortical cholinergic depletion on the performance of adult rats in an appetitive-to-aversive transfer task. Neuroscience 2001 Abstracts 313.3. Society for Neuroscience, San Diego, CA.
Summary: The acetylcholinergic (ACh) projections from the nucleus basalis magnocellularis (NBM) to the neocortex have been implicated in attentional processes. In a test of the hypothesis that only complex learning is affected by damage to this cholinergic system, we examined the effects of NBM lesions in an appetitive-to-aversive transfer learning task. Rats were trained using a tone to signal the availability of food reward for lever-pressing before being transferred to an avoidance learning task where the same tone signaled foot-shock that could be escaped or avoided by lever-pressing. A second experiment examined learning in the aversive context only. For both experiments, male Long-Evans rats received bilateral infusions of the immunotoxin192 IgG saporin into the NBM, sham surgery, or no treatment. Acquisition in the appetitive phase of the appetitive-to-aversive transfer task was normal in the NBM lesion group. However, transfer performance in the aversive task was impaired in NBM lesion group; NBM-lesioned rats acquired the avoidance response more slowly and had lower asymptotic avoidance rates than controls. NBM-lesioned rats tested only in the aversive task performed normally. Thus, the deficit in avoidance learning observed in the NBM-lesioned rats previously trained in the appetitive task was not due simply to an inability to learn in the aversive context. Impairments in transfer learning are instead argued to reflect the relative complexity of the appetitive-to-aversive transfer task as compared to either task alone.
Related Products: 192-IgG-SAP (Cat. #IT-01)