1. Home
  2. Knowledge Base
  3. References
  4. Specific killing of rat medullary raphe 5-HT neurons by a serotonin transporter antibody-saporin conjugate reduces the ventilatory response to increased CO2 during sleep and wakefulness.

Specific killing of rat medullary raphe 5-HT neurons by a serotonin transporter antibody-saporin conjugate reduces the ventilatory response to increased CO2 during sleep and wakefulness.

Nattie EE, Li A, Richerson G, Lappi D (2002) Specific killing of rat medullary raphe 5-HT neurons by a serotonin transporter antibody-saporin conjugate reduces the ventilatory response to increased CO2 during sleep and wakefulness. Neuroscience 2002 Abstracts 221.3. Society for Neuroscience, Orlando, FL.

Summary: CO2 increases the firing rate of medullary raphe 5-HT neurons in vitro (Richerson et al., Respir. Physiol. 129: 175-190, 2001) and focal CO2 dialysis in the medullary raphe increases ventilation in the sleeping rat (Nattie and Li, J. Appl. Physiol. 90: 1247-1257, 2001). To examine in vivo the relative importance of these 5-HT neurons in chemoreception we used an antibody to the external ring of the serotonin tranport protein (SERT)(SFN abstract #814.9, 2001) conjugated to the cell toxin saporin (SAP). Rat medullary raphe neurons (P0) in culture assayed by TPOH immunoreactivity were killed by 10 and 5 nM SERT-SAP with peak effects at 4 and 7 days, respectively. Non-serotonergic neurons were unaffected. In adult rats after measurement of baseline ventilatory values, we placed EEG/EMG electrodes and injected the SERT-SAP conjugate (1 uM) into the medullary raphe (two adjacent 100 nl injections). There was substantial loss of TPOH but not NK1R immunoreactivity measured at 14 days. There was no effect on ventilation during air breathing awake or asleep. Ventilation during 7% CO2 was significantly decreased in sleep (P < 0.001; repeated measures ANOVA) at days 1, 3, 7, and 14 (-13 to -15%; P < 0.05; Tukey post-hoc test) and in wakefulness (P < 0.01; repeated measures ANOVA) at days 1, 3, 7, and 14 (-10 to -16%; P < 0.05; Tukey post-hoc test). Medullary raphe serotonergic neurons in the rat play an important role in the ventilatory response to systemic hypercapnia during sleep and wakefulness.

Related Products: Anti-SERT-SAP (Cat. #IT-23)

Browse Articles

Need Support?

Can't find what you're looking for? Contact us, we're here to help!