Sarter MF, Martinez V, Bruno JP (2003) Lateralization of the attentional functions mediated via cortical cholinergic inputs. Neuroscience 2003 Abstracts 921.20. Society for Neuroscience, New Orleans, LA.
Summary: The role of basal forebrain (BF) corticopetal cholinergic projections in mediating attentional processing has been well established. For example, bilateral cortical cholinergic deafferentation produces robust impairments in attention. Neuropsychological and neuroimaging studies have postulated that attentional functions and capacities are mediated primarily via a lateralized, right-hemispheric network. The present study tested the general hypothesis that the attentional functions of cortical cholinergic inputs likewise are lateralized and thus that right-hemisphere cortical cholinergic deafferentation yields more severe attentional impairments. Rats were trained to perform an operant sustained attention task. Upon reaching criterion performance, unilateral cortical cholinergic deafferentation was produced by infusions of 192-IgG saporin into either the left or right BF. Compared with the performance of sham-operated animals and animals with left-hemispheric lesions, right-hemispheric cortical cholinergic deafferentation resulted in a persistent and selective decrease in the detection of signals (hits), mirroring the more potent but similarly selective effects of bilateral lesions. In contrast, left cortical cholinergic deafferentation did not affect hits but decreased the number of rejections in non-signal trials. These data extend previous studies suggesting that the integrity of the right cortical cholinergic input system is necessary for signal detection (Bushnell et al. 1998). Furthermore, the present data substantiate the assumption that the detection of signals and the rejection of non-signals are based on fundamentally different cognitive operations, and that the cholinergic mediation of these two operations is lateralized.
Related Products: 192-IgG-SAP (Cat. #IT-01)