Nolan BC, Freeman JH (2003) Purkinje cell depletion by ox7-saporin impairs eyeblink conditioned excitation and inhibition in rats. Neuroscience 2003 Abstracts 87.3. Society for Neuroscience, New Orleans, LA.
Summary: The role of the cerebellar cortex in conditioned excitation has been demonstrated by studies that used lesions, inactivation, and electrical stimulation (e.g., Attwell, Rahman, & Yeo, 2001, J Neurosci, 21, 5715-5722). However, very little evidence exists concerning the role of the cerebellar cortex in conditioned inhibition. Moreover, there are multiple blink control zones in the cerebellar cortex (Hesslow, 1994, J Physiol, 476, 229-244), which complicates the interpretation of studies that use localized lesions. In the current study, rats were infused with the immunotoxin OX7-saporin into the lateral ventricles to selectively destroy Purkinje cells throughout the cerebellar cortex (Angner, et.al, 2000, Neurotox, 21, 395-404). The OX7- saporin method provides advantages relative to other methods, including the ability to deplete Purkinje cells after initial training. In Experiment 1, rats were given saline or OX7-saporin prior to excitatory conditioning training, which was established using a tone conditioned stimulus (CS) paired with a periorbital shock unconditioned stimulus (US). Rats given OX7-saporin had nearly complete Purkinje cell loss and acquisition of excitatory conditioning was severely impaired. In Experiment 2, rats were first trained with excitatory conditioning procedures, followed by infusion of either saline or OX7-saporin. After a two-week post-infusion period, the rats were given reacquisition training. After reacquiring excitatory conditioning, the rats were trained using a feature-negative discrimination procedure consisting of trials with CS-US pairings and trials with a non-reinforced tone-light compound stimulus. Rats treated with OX7-saporin showed a significant impairment in reacquisition and acquisition of conditioned inhibition. The results suggest that Purkinje cells are critically involved in the acquisition of both conditioned excitation and inhibition in rats.
Related Products: OX7-SAP (Cat. #IT-02)