1. Home
  2. Knowledge Base
  3. References
  4. Cholinergic deafferentation increases expression of the glur-1 subunit of the AMPA receptor in frontal cortex of young adult but not aging rats

Cholinergic deafferentation increases expression of the glur-1 subunit of the AMPA receptor in frontal cortex of young adult but not aging rats

Kim I, Wilson RE, Wellman CL (2003) Cholinergic deafferentation increases expression of the glur-1 subunit of the AMPA receptor in frontal cortex of young adult but not aging rats. Neuroscience 2003 Abstracts 633.9. Society for Neuroscience, New Orleans, LA.

Summary: Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: cholinergic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. In addition, these lesions result in upregulation of dendritic spines in frontal cortex of young adult but not aging rats. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed immunohistochemical labeling of the AMPA receptor subunit GluR1 in young adult and aging rats after either sham or 192 IgG saporin lesions of the NBM. Young adult (N=17), middle-aged (N=16), and aged rats (N=13) received unilateral sham or 192 IgG saporin lesions of the NBM. Two weeks later, brains were processed for immunohistochemical labeling of the GluR1 subunit of the AMPA receptor. An unbiased stereological technique was used to estimate density of labeled neurons in layer II-III of frontal cortex. Cells were identified as neurons based on standard morphological criteria and counted. Using a computerized image analysis system interfaced with a microscope, the average optical density of the white matter below frontal cortex was determined; neurons with optical densities at least one standard deviation above this mean were identified as intensely labeled. In young adult rats, lesions produced a 55% increase in the density of intensely GluR1-immunopositive neurons in frontal cortex. On the other hand, lesions had no effect on counts of GluR1-immunoreactive neurons in middle-aged and aged rats. This age-related difference in lesion-induced expression of AMPA receptor subunit protein could underlie the age-related differences in dendritic plasticity after NBM lesions.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top