Herron P, Ismail NS (2003) Progressive effects of cholinergic depletion on cortical functional properties in the somatosensory cortex of rats. Neuroscience 2003 Abstracts 61.11. Society for Neuroscience, New Orleans, LA.
Summary: The amount and duration of cholinergic depletion of basal forebrain input appear to be important for how significant the functional capacity of cortical neurons and behavior are affected. Firstly, it is not known whether there is a correlative relationship between the level of cholinergic depletion and the level of degraded functional properties or whether there is a threshold of depletion, beyond which no further degradation occurs. Secondly, it is not known whether similar levels of cholinergic depletion over different periods cause the similar or different effects on functional capacities and behavior. These experiments were done in the posteromedial barrel subfield (PMBSF) cortex of young adult Sprague-Dawley rats. Selective lesion of cholinergic neurons in the NBM was achieved with cortical or intraventricular injections of the immunotoxin (IT), 192 IgG saporin. Electrophysiological recordings and whisker use in exploratory behavior were monitored for different post-injection survival periods. Results show that cholinergic depletion causes a significant decrease in the magnitude of evoked activity and an increase in the size of receptive fields for different periods. Observations of exploratory behavior showed that animals used whiskers controlled by cholinergic depleted cortex less than the whiskers controlled by non-cholinergic depleted cortex. Thus, cholinergic depletion leads to effects that significantly alter the functional capacity of the cortex and the behavioral use of those whiskers.
Related Products: 192-IgG-SAP (Cat. #IT-01)