Richerson GB, Nattie EE, Deneris ES, Lauder JM (2003) Serotonergic neurons and development: implications for normal brain function and human disease. Neuroscience 2003 Abstracts 329. Society for Neuroscience, New Orleans, LA.
Summary: Symposium. Serotonergic neurons have widely divergent projections to virtually all of the CNS, and are involved in a variety of brain functions. This symposium will focus on how dysfunction of 5-HT neurons during development can influence brain function throughout life. G Richerson will discuss pH chemosensitivity of 5-HT neurons, how this changes during development, and the emerging hypothesis that these neurons induce arousal, a feeling of suffocation and hyperventilation in response to increased CO2. E Nattie has used focal manipulations of the raphe in vivo, including cell specific killing with an antibody to the serotonin transporter conjugated to the toxin saporin, to show that dysfunction of 5-HT neurons may lead to a defect in physiologic regulatory processes that are important during development. E Deneris will discuss mutant mice lacking the Pet-1 ETS gene, in which the majority of CNS 5-HT neurons are missing. 25-30% of Pet-1 nulls die during the first postnatal week, which may result from abnormal respiration. Surviving adults display anxiety-like and aggressive behavior. J Lauder will discuss 5-HT as a differentiation signal in prenatal brain development and as a morphogen in craniofacial development. Effects of prenatal exposure to serotonergic drugs or neurotoxins on postnatal outcome will be described. The speakers will introduce new hypotheses about how dysregulation of 5-HT neurons and 5-HT receptors during development may lead to a variety of brain disorders such as SIDS, migraine, autism, panic attacks and anxiety.
Related Products: Anti-SERT-SAP (Cat. #IT-23)